首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
基于变速控制力矩陀螺群动力学模型建立其复合控制方程和分系统解耦约束方程,用矩阵投影方法同步设计得到航天器姿态与能量一体控制复合操纵律,利用Lyapunov方法分析了转子轴向惯量误差对姿态控制分系统的影响.根据飞轮转子轴向惯量与功率输出之间的误差关系设计出功率控制补偿器.复合操纵律中的力矩和功率两解形式相同,约束方程使得姿态与能量控制两分系统解耦,便于进行考虑执行机构特性的闭环控制系统性能分析.考虑飞轮转子轴向惯量误差时,姿态控制分系统的输出耗散特性使其能够保持稳定,而功率控制分系统输出误差与转子轴向惯量误差成比例关系,经过补偿后功率输出能满足控制要求.  相似文献   

2.
针对带液体晃动的月球着陆器提出了一种基于无源性的姿态控制方法.分析了由拉格朗日力学建立数学模型的带液体晃动的月球着陆器系统的特性,并证明了该系统的无源性.无源性保证了系统的输入输出稳定性,提出的Lyapunov函数保证了系统的内部稳定性.根据系统的无源性和提出的Lya-punov函数推导出基于无源性的控制方法.仿真结果表明,该方法能很好地达到控制效果.  相似文献   

3.
研究了一种无角速度信息挠性航天器的姿态稳定控制方法。针对挠性航天器陀螺故障或无陀螺配置中无角速度测量信息情形下的姿态控制问题,基于姿态四元数设计了姿态定点调节的无速率控制器,利用Lyapunov方法和LaSalle不变原理证明了闭环系统的全局渐近稳定性,并对控制方案进行了改进。仿真验证了控制律的有效性。  相似文献   

4.
针对自主飞艇姿态运动的非线性、耦合和不确定等特点,研究了一种终端滑模姿态控制方法。首先推导了飞艇姿态运动的数学模型,通过选取状态向量和控制向量,将其描述为非线性控制系统。然后基于微分几何理论将非线性姿态控制系统输入输出线性化为3个通道的线性子系统,利用滑模控制对模型不确定和外界扰动的不变性设计了姿态控制律,通过选取终端滑模函数使得姿态跟踪误差在有限时间内收敛至零,并应用Lyapunov理论证明了闭环系统的稳定性。最后对具有模型不确定的姿态控制系统进行了数值仿真,验证了控制方法的有效性和鲁棒性。  相似文献   

5.
考虑控制饱和的卫星姿态控制器设计   总被引:1,自引:0,他引:1  
研究了基于修正罗得里格参数的刚体卫星在控制输入受限时的姿态控制问题。首先提出了一种全状态反馈姿态控制器的设计方案,并通过李亚普诺夫方法证明了闭环系统零平衡点的全局稳定性。然后针对姿态角速率信号不可测量的情形,设计了一种仅依赖修正罗得里格参数信息的输出反馈控制方案。另外,通过在所提出的控制方案中引入双曲正切饱和函数,推导出只需控制参数的选取满足某一限制条件,就能有效地抑制控制输入的饱和问题。仿真结果表明,所设计的控制方案有效、可行。  相似文献   

6.
针对高超声速飞行器三通道具有强耦合的问题,提出一种基于扩张状态观测器的全通道解耦控制方法。该方法不需要根据耦合项特点设计耦合补偿模型,而是通过设计扩张状态观测器,将高超声速飞行器耦合项视为扰动,利用扩张状态观测器具有实时跟踪估计扰动的能力,将耦合项扰动估计出来。通过补偿控制来消除耦合的影响,从而完成解耦控制。进一步,通过LQR控制方法完成姿态控制系统的闭环反馈控制律设计,最终实现一种工程上实用的高超声速飞行器解耦控制方法,并通过数学仿真验证了该控制方法的正确性和有效性。  相似文献   

7.
针对存在转动惯量不确定性和外部干扰的挠性航天器,首先构造了一个部分状态观测器估计挠性模态,然后设计自适应律对转动惯量不确定性和外部干扰组成的函数的上界进行估计。最后,在设计的观测器和自适应律的基础上,建立了挠性航天器的基于部分状态观测器的自适应滑模姿态稳定控制律。采用Lyapunov方法证明了在挠性航天器存在转动惯量不确定性和外部干扰时, 所设计的自适应滑模姿态控制律能使闭环航天器姿态系统稳定。最后, 通过数值仿真例子验证了所提出方法的有效性。  相似文献   

8.
摘要: 针对航天器姿态控制系统相平面控制的稳定性分析这一难题,本文提出一种简化相平面控制律,并选取刚体卫星作为被控对象,研究闭环控制系统的稳定性.利用相平面分析方法对闭环系统轨线进行定量估计,证明闭环控制系统存在特定的稳态区域,并给出该稳态区域的计算公式.采用相平面分析方法定量估计闭环系统轨线的思想,证明当控制律参数满足适当条件时,从任意初值状态出发的闭环控制系统轨线都可以在有限时间内到达稳态区域,并且一直保持在稳态区域中,从而证明闭环控制系统的全局一致最终有界性.推导出闭环控制系统的轨线从初值状态到达稳态区域所用时间的估算公式.仿真验证了结果的有效性.  相似文献   

9.
挠性太阳帆板驱动控制系统研究   总被引:1,自引:0,他引:1  
主要研究了挠性太阳帆板的闭环驱动控制问题.利用挠性结构的模态恒等式,获得了广义状态空间形式的挠性太阳帆板驱动动力学方程.基于Lyapunov方法,设计了基于输出反馈的PD控制器,并根据广义系统理论讨论了闭环系统的正则性和无脉冲性,以确保控制系统是允许的.数值仿真验证了闭环控制算法的有效性并与开环控制进行了比对.最后进行了总结并提出新的研究问题.  相似文献   

10.
分析了卫星无拖曳控制系统的在轨参数辨识问题,由于无拖曳系统的不稳定性质,需要设计控制器使其稳定,在此基础上进行闭环辨识.根据自抗扰控制原理,设计了扩张状态观测器以估计系统不同控制回路的扰动和状态,基于状态和扰动估计值设计控制器使系统稳定.提出了基于扩张状态观测器(ESO)的多输入多输出系统闭环参数辨识方法.为提高实际应用中的辨识效果,引入积分型滤波器对观测状态中的噪声进行抑制.将这种方法应用于类似LISA Pathfinder的单轴无拖曳模型,对系统动力学参数进行估计,通过数值仿真实验验证了该辨识方法的有效性和实用性.   相似文献   

11.
针对当前轨迹线性化控制(TLC)方法对系统中的不确定性存在鲁棒性不足的问题,受非线性跟踪微分器设计思路的启发,提出了一种基于微分器设计原则的轨迹线性化控制方法.首先,引入二阶线性微分器(SOLD)的概念,通过理论分析指出了当前轨迹线性化控制方法中采用一阶惯性+伪微分器求取标称指令的微分信号时,会存在与二阶线性微分器类似的峰值现象,随后利用韩式跟踪微分器(TD)求取标称指令及其微分信号,避免了该现象的同时又赋予了系统在控制量的约束范围内调节响应快慢的能力;其次,通过构造期望的闭环系统,跟踪误差动态,直接获取线性时变(LTV)系统的控制量, 使得参数整定不再依赖于并行微分(PD)谱理论,在此基础上,将混合微分器(HD)的非摄动形式等价为期望的闭环系统跟踪误差动态,以提升轨迹线性化控制方法的鲁棒性,同时借助Lyapunov稳定性理论证明了受扰系统的跟踪误差最终一致有界;最后,利用所提出的轨迹线性化控制方法设计了高超声速飞行器的姿控系统并进行了相应的仿真.结果表明:存在大范围气动参数摄动的情况下,本方法仍具有较好的控制性能及抗干扰能力,能够满足高超声速飞行器快时变、高精度以及强鲁棒的控制需求.   相似文献   

12.
针对含有传感器与舵面故障的运输机姿态跟踪问题, 提出了一种基于扩张状态观测器的反步容错控制方法。采用状态观测器与控制器分开设计的方法, 设计含神经网络的扩张状态观测器估计系统状态、传感器和舵面故障信息。在此基础上, 利用状态估计值代替实际状态, 采用反步法设计姿态角跟踪控制律, 并引入指令滤波器提高反步法的控制性能, 基于Lyapunov稳定性理论推导证明了闭环系统跟踪误差的最终有界收敛。仿真结果表明, 在系统存在传感器与舵面多故障的条件下, 所提方法依然可以实现运输机姿态角的稳定跟踪。   相似文献   

13.
针对双通道控制高超声速飞行器横侧向欠驱动、强不确定性的特点,研究了适用于工程应用的控制策略,提出一种基于特征根有界摄动分析的反馈控制鲁棒性分析方法。基于线性化近似分析和工程约束需求,给出了双通道飞行器改善荷兰滚模态动态的2种控制策略,分别为极点配置方案和模态解耦方案。提出了特征根灵敏度矩阵和有界摄动矩阵的概念,用于评估闭环系统对参数不确定的鲁棒性。基于闭环六自由度模型在标称及参数拉偏情况下,对2种方案进行了综合分析和仿真验证。仿真结果表明,2种控制方案均可以解决双通道控制问题,所提特征根有界摄动分析方法可准确评估系统的鲁棒性。  相似文献   

14.
变重量/重心飞机建模及姿态控制律设计   总被引:3,自引:0,他引:3  
为解决飞机在重量、重心变化下的姿态控制问题,从相互作用力的角度将重量、重心的变化转化为干扰力和干扰力矩,提出并建立了变重量/重心飞机的一般动力学模型和重量、重心特性模型.该模型可以反映重量、重心动态变化与飞机运动的耦合,解决了现有模型无法处理飞机重心动态变化的问题.在姿态控制律设计上,提出了针对飞机重量、重心变化的干扰观测补偿控制器结构,将重量、重心变化转化为干扰输入,采用比例积分观测器对重量、重心变化引起的干扰力和力矩进行观测,并将观测值解算为补偿信号引入自动驾驶仪,设计了纵向姿态的干扰补偿控制器.以运输机重型货物空投为背景的计算机仿真结果表明:该模型可以准确反映飞机在重心变化各个阶段的动力学特性;在观测器的补偿指令作用下,俯仰角对重量、重心变化的响应波动远小于未加补偿的情形,满足精确姿态控制的需要.   相似文献   

15.
针对刚体卫星的姿态控制问题,设计了不存在和存在扰动力矩两种条件下的有限时间状态反馈控制律.对于无扰动力矩情形,基于非线性齐次系统性质,设计了一种便于工程实践性的连续、非奇异的比例微分形式控制算法,保证姿态闭环系统有限时间收敛到零点,而且此算法能直接推广到卫星姿态跟踪问题.对于存在扰动力矩的情形,基于有限时间Lyapunov定理设计的连续、非奇异的控制力矩保证卫星姿态和角速度在有限时间内收敛到原点附近的邻域.当外扰力矩为零时,此控制律使闭环系统状态有限时间收敛到平衡点.数学仿真结果说明了提出的控制算法有效.  相似文献   

16.
针对高超声速飞行器快时变、强耦合以及存在参数不确定和外部干扰情况下的姿态控制问题,同时考虑到执行机构动态和输入受限,提出了基于滑模干扰观测器-轨迹线性化(SMDO-TLC,Sliding-Mode Disturbance Observer-Trajectory Linearization Control)的高超声速姿态控制方法.首先,引入二阶线性微分器(SOLD,Second-Order Linear Differentiator)的概念,通过理论分析指出了当前TLC中采用一阶惯性+伪微分器求取输入指令的微分信号时会存在与SOLD类似的峰值现象,随后利用韩式跟踪微分器求取姿态标称指令及其微分信号,可有效解决过渡过程中执行机构饱和问题;接着,分别在姿态和角速率回路设计二阶滑模干扰观测器,利用符号函数积分来重构内外回路的复合干扰,在此基础上设计补偿控制律,以实现姿态控制器设计.仿真结果表明,所提出的方法能够克服时变干扰及气动参数大范围摄动的影响,同时兼具良好的动态特性与静态品质,能够满足高超声速飞行器的快时变、高精度以及强鲁棒的控制需求.  相似文献   

17.
针对非合作目标存在对抗性力矩输出情况下的组合体航天器姿态控制系统,提出了一种基于模糊神经网络干扰观测器(Fuzzy Neural Network Disturbance Observer, FNNDO)的非奇异终端滑模(Nonsingular Terminal Sliding Mode, NTSM)有限时间控制策略。首先以服务航天器为基准,建立组合体航天器姿态数学模型,然后针对包含惯量不确定性、目标对抗性力矩等的等效干扰力矩,设计了一种具有自适应能力的FNNDO,可以实现对等效干扰的有效跟踪。在FNNDO的基础上,设计NTSM控制器,利用Lyapunov理论证明闭环系统的有限时间稳定性。最后,仿真实验结果表明了控制策略的有效性和观测器在观测性能上的优越性。  相似文献   

18.
针对验证可重复使用运载器关键控制技术的需求,提出了一套基于STM32的可重复使用运载器闭环仿真系统。基于该套平台,对系统的总体方案、硬件平台设计、软件开发及设计进行了重点论述,实现了箭上测量单元、计算机单元、执行单元及地面测发控单元的模拟。通过仿真试验验证,完成了可重复使用运载器制导、导航及姿控算法等关键控制技术的验证。结果表明:所开发的闭环仿真系统设计合理,系统实时性好,可靠性高。可为可重复使用运载器大型试验奠定基础,缩短研制周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号