首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of using the light pressure of solar radiation for increasing the semimajor axis of the orbit of an Earth Satellite carrying a solar sail is estimated. The orbit is nearly circular and has an altitude of about 900 km. The satellite is in the mode of single-axis solar orientation: it rotates at an angular velocity of 1 deg/s around the axis of symmetry, which traces the direction to the Sun. This mode is maintained by the solar sail, which serves in this case as a solar stabilizer. The following method of increasing the semimajor axis of the orbit (which is equivalent to increasing the total energy of the satellite's orbital motion) is considered. On those sections of the orbit, where the angle between the light pressure force acting upon the sail and the vector of geocentric velocity of the satellite does not exceed a specified limit, the sail is functioning as a solar stabilizer. On those sections of the orbit, where the above-indicated angle exceeds this limit, the sail is furled by way of turning the edges of the petals towards the Sun. Such a control increases the semimajor axis by more than 150 km for three months of flight. In this case, the accuracy of solar orientation decreases insignificantly.  相似文献   

2.
太阳帆绕地球周期轨道研究   总被引:1,自引:0,他引:1  
  地球同步和太阳同步卫星在各个领域有着广泛的应用。静止轨道是一种特殊的地球同步轨道,轨道资源有限。利用化学推进或电推进可以实现轨道高度不同的同步轨道,如悬挂轨道,但需要消耗较多的燃料,工程上无法承受。本文考虑利用太阳帆实现地球同步和太阳同步轨道。太阳光压力在轨道平面内沿拱线方向,选择光压力与平面的夹角使得轨道平面的旋转速率与太阳光同步。研究表明,设计合适的半长轴和偏心率可以使得轨道旋转速率与地球自转速率一致。假设太阳光与赤道平面平行,可以得到准静止轨道,太阳帆将在传统静止轨道的附近运动,星下点的经度将在一个固定值附近振动。实际上太阳光是与黄道面平行,黄道面与赤道面之间存在夹角。考虑黄赤交角的情况下,太阳帆将在一定纬度和经度范围内运动。适合于对某个区域进行长期观测任务。  相似文献   

3.
Study on Multi-Rotary Joints Space Power Satellite Concept   总被引:1,自引:0,他引:1  
The Space Power Satellite(SPS) would be a huge spacecraft capturing the power of solar radiation in space and to supply electric power to the electric grid on the ground. The SPS concept was proposed by Dr. Peter Glaser in 1968. SPS have been studied now for exactly fifty years by many scientists in various countries. It has been regarded as one of the most promising energy projects of the future and has been attracting more attention in recent years. More and more Chinese scholars and experts are paying attention to the development of SPS. Due to the huge size, immense mass and high power of such a satellite system, there are many technical difficulties which exist to realize SPS. In this paper, recent SPS research and development activities are reviewed first. Various SPS concepts are analyzed and compared. The primary scheme of the Multi-Rotary joint SPS(MR-SPS) is described. The main feature is that the huge solar array comprising many separate small solar sub-arrays and each solar sub-array has two middle power rotary joints. So, the most challenging technology, the high-power rotary joint, is simplified by using many middlepower rotary joints hence the possibility of a single-point failure of a single rotary joint is avoided. This enables easy assembly of the modular solar arrays. Finally some key technologies of MR-SPS are analyzed.  相似文献   

4.
太阳帆航天器研究及其关键技术综述   总被引:1,自引:0,他引:1  
综述了国内外关于太阳帆航天器的研究成果。介绍了太阳帆航天器的构型与材料、姿态控制、轨道控制及任务分析、试验验证及动力学仿真分析等的研究进展,讨论了太阳帆航天器轻质高强度帆体、折叠储存与展开控制、结构设计、姿态控制、地面试验及在轨演示验证,以及测试与诊断等关键技术,分析了未来太阳帆航天器的发展趋势。  相似文献   

5.
张军徽  方瑞颖  武娜  佟安  刘应华 《宇航学报》2020,41(10):1295-1304
本文研究条带式太阳帆在近地轨道运行进出地球阴影时的热致结构动力学响应,建立了在太阳热辐射和光压共同作用下的太阳帆结构动力学方程,采用分布传递函数法,给出了条带式太阳帆热致结构稳态振动幅频响应的计算方法。算例结果表明:热辐射冲击是引起近地轨道太阳帆结构动力学响应的主要原因,光压引起的结构响应可忽略不计;增加桅杆壁厚不能有效抑制太阳帆的热致结构动态响应;增大阻尼,减小结构的热膨胀系数能够明显减小太阳帆热致结构响应的振幅;热致结构动态响应是设计大尺寸近地轨道太阳帆必须解决的问题。本文提出的方法可为太阳帆结构设计、姿态和轨道控制提供有力的分析工具。  相似文献   

6.
Solar sails are a concept of spacecraft propulsion that takes advantage of solar radiation pressure to propel a spacecraft. Although the thrust provided by a solar sail is small it is constant and unlimited. This offers the chance to deal with novel mission concept. In this work we want to discuss the controllability of a spacecraft around a Halo orbit by means of a solar sail. We will describe the natural dynamics for a solar sail around a Halo orbit. By natural dynamics we mean the behaviour of the trajectory of a solar sail when no control on the sail orientation is applied. We will then discuss how a sequence of changes on the sail orientation will affects the sail's trajectory, and we will use this information to derive efficient station keeping strategies. Finally we will check the robustness of these strategies including different sources of errors in our simulations.  相似文献   

7.
IKAROS太阳帆的关键技术分析与启示   总被引:6,自引:3,他引:3  
分析了国外太阳帆的发展现状,重点论述了世界上首次成功飞行的太阳帆——太阳辐射驱动星际风筝航天器(IKAROS)的总体设计、材料设计、空间展开和姿态控制等关键技术,以及中国开展太阳帆和空间大型展开结构的总体设计、空间展开、姿态控制、空间环境适应性等关键技术,提出了系统开展以太阳帆为代表的大型轻质展开结构研制与应用的建议。  相似文献   

8.
We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.  相似文献   

9.
电动帆是一种新兴的无推进剂损耗的推进方式,利用太阳风的动能冲力飞行。电动帆由数百根长而细的金属链所组成,这些金属链通过空间飞行器自旋展开,太阳能电子枪向外喷射电子,使金属链始终保持在高度的正电位,这些带电的金属链会排斥太阳风质子,利用太阳风的动能冲力推动空间飞行器驶向目标方向。针对电动帆轨迹优化问题,提出采用Gauss伪谱法进行轨迹优化,克服了间接法对协态变量初值敏感的缺点。考虑在太阳风暴等原因造成特征加速度改变的情况,基于Gauss伪谱法实现电动帆在线轨迹重新规划,提高电动帆对太阳风不确定性的适应能力。最后以太阳系外探测任务为例,对电动帆和太阳帆的性能进行对比,仿真结果表明电动帆在星际远航任务中所用时间较短。  相似文献   

10.
The relative importance of certain general relativistic effects is enhanced by solar radiation pressure (SRP). The observation and study of the trajectories of a solar sail could potentially provide tests of various effects of general relativity. In particular, we study Keplerian and non-Keplerian orbits near the sun as well as escape trajectories for a solar sail, for which general relativistic effects and the solar radiation pressure are considered simultaneously. In contrast with the conventional solar mission, a solar sail allows for non-Keplerian orbits, for which the orbital plane lies above the sun. It is predicted that there is an analog of the Lense–Thirring effect for non-Keplerian orbits. Also the SRP increases the amount of precession per orbit due to the Lense–Thirring effect for polar heliocentric orbits. A solar sail would also enhance the relative importance of effects associated with a possible net charge on the sun and during many rotations this effect may be measurable.  相似文献   

11.
太阳帆日心定点悬浮转移轨道设计   总被引:1,自引:0,他引:1  
研究了太阳帆航天器日心定点悬浮轨道(HFDO)的转移轨道设计问题,以球坐标形式建立了太阳帆的动力学模型,基于该模型给出在日心悬浮轨道基础上实现定点悬浮的条件,提出了一种实现日心定点悬浮的转移轨道设计方法。首先,确定定点悬浮的位置;然后,设计经过该位置的绕日极轨轨道;最后,实施轨道减速实现定点悬浮,并给出了解析形式的轨道控制律。结合太阳极地观测任务,设计了定点悬浮在太阳北极1AU处的太阳帆转移轨道。仿真结果表明:该轨道转移方案总耗时3.5年,太阳帆定点到黄北极距日心1AU处,此后只要保持太阳光垂直照射帆面,即可维持稳定的悬浮状态。  相似文献   

12.
There is a general possibility of creation in space of large controlled mirror reflectors for solar and electromagnetic radiation with specific mass order of 1 g m?2 or less. Such reflectors may be used in space energetics for concentration of solar energy for its further conversion into microwave beam and transmission to the Earth. They can also be used to illuminate the Earth surface in a dark period with reflected sunlight, to control the weather, for research work and some other purposes. Such reflector is a good solar sail. The control of its orientation and position in space is performed using solar energy and light pressure without spending fuel delivered from the Earth. Its form is maintained by centrifugal forces and light pressure. The film strength permits concentrators with radii of several kilometres and nearly flat reflectors for lighting applications with radii of hundreds of metres. Large series of identical reflectors can be built in space using superthin film tape at assembly station. For a year more than a hundred reflectors with a diameter of 600 m can be assembled at such a station. The assembly station can be placed at the height of 1000 km. The reflectors transfer to synchronous or other orbit is performed using their sail-likeness. For realization of such reflectors one should solve a very difficult problem of superthin film mass production as well as assembly technology problems. Careful study and experimental checks of their lifetime should be also made.  相似文献   

13.
In the early to mid-2000s, NASA made substantial progress in the development of solar sail propulsion systems. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems were designed for large robotic spacecraft. Recently, however, NASA has been investigating the application of solar sails for small satellite propulsion. The NanoSail-D is a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. This paper will present an introduction solar sail propulsion systems and an overview of the NanoSail-D spacecraft.  相似文献   

14.
共线平动点附近的运动仅仅是条件稳定的,探测器的轨道需要经过控制才能维持在其附近.以地-月系11点和12点附近大振幅晕轨道的控制为例,探讨了太阳帆在定点这类探测器中的应用.首先,考虑了月球轨道的偏心率和太阳辐射的影响,给出了太阳帆对日定向的探测器轨道的低阶分析解,并在此基础上构造了在太阳系真实引力模型下一段时间内维持在共线平动点附近的拟周期轨道.然后,给出了两种利用太阳帆的控制方案,一是固定面质比而改变太阳帆法线的方向,另一是固定太阳帆对日定向而改变面质比,并对两种方案分别作了数值模拟.最后,文章探讨了测控误差及地、月影对轨道控制的影响.  相似文献   

15.
研究了太阳帆日心移位轨道的稳定性、控制律设计及轨道拼接。将柱坐标形式的太阳帆动力学方程在参考移位轨道附近线性化,得到线性变分方程。分析线性变分方程的特征值在复数平面上的位置就可以得到移位轨道的稳定性条件。设计了太阳帆日心移位轨道的控制律,并证明了控制律满足稳定性条件。该控制律仅要求太阳帆在移位轨道飞行时姿态角α保持不变。此外,太阳帆移位轨道可以与开普勒轨道相互转化,也可以与移位轨道之间相互拼接。  相似文献   

16.
无线输电技术与卫星太阳能电站的发展前景   总被引:3,自引:0,他引:3  
文章简要叙述了无线输电和卫星太阳能电站的概念,特别强调了无线输电技术和建造卫星太阳能电站的科学技术意义和深远的战略意义;扼要介绍分析了国外在该领域的研究进展;概括叙述了建造卫星太阳能电站的技术经济性及科技界共同关心的几个问题;充分肯定了它的科学技术研究价值、应用前景和未来所带来的巨大的社会经济效益。  相似文献   

17.
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged.  相似文献   

18.
Solar sail formation flying on an inclined Earth orbit   总被引:2,自引:0,他引:2  
The versatility of solar sail propulsion can be utilized in the exploration of Earth’s magnetotail. An inclined periodic orbit with respect to ecliptic is possible for a solar sail with its orbital plane in synchronous rotation with the sun. Solar sail evolving on such an inclined orbit is free of Earth shadow. Formation flying of a cluster of sails around such an inclined periodic orbit is investigated in this paper. The solution of the first-order approximation to the linear relative motion is used to qualitatively analyze the configurations of relative orbits. Since the relative motion is unstable, active control is necessary to keep a periodic relative motion. A typical LQR method is employed to stabilize the relative motion. The design method is validated by numerical examples.  相似文献   

19.
杜兰  郑勇  张云飞  陈琼 《上海航天》2006,23(5):16-19,54
在卫星动力法定轨的协方差分析基础上,提出了一种针对地球静止轨道(GEO)卫星的简化定轨精度分析方法。根据GEO卫星的线性化状态转移方程,通过设定地面跟踪网坐标和卫星星下点经度计算叠加矩阵,由观测弧长和采样间隔直接计算定轨精度评定公式中的主要部分。公式扩展后,能比较各种系统误差源对定轨精度的影响,并将影响较大的作为附加参数纳入估计过程并重新评价定轨精度。用该法对10 m定轨精度的测距跟踪网优化设计和测距偏差对定轨精度的影响特性进行分析的结果表明,测量系统中的系统性误差可能以近20的放大倍率传播到卫星沿迹方向和法向,且不能通过自校准测距常值偏差提高定轨精度。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号