首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the impact of environmental UV radiation on human health and ecosystems demands monitoring systems that weight the spectral irradiance according to the biological responses under consideration. In general, there are three different approaches to quantify a biologically effective solar irradiance. (i) weighted spectroradiometry where the biologically weighted radiometric quantities are derived from spectral data by multiplication with an action spectrum of a relevant photobiological reaction, e.g. erythema, DNA damage, skin cancer, reduced productivity of terrestrial plants and aquatic foodweb, (ii) wavelength integrating chemical-based or physical dosimetric systems with spectral sensitivities similar to a biological response curve, and (iii) biological dosimeters that directly weight the incident UV components of sunlight in relation to the effectiveness of the different wavelengths and to interactions between them. Most biological dosimeters, such as bacteria, bacteriophages, or biomolecules, are based on the UV sensitivity of DNA. If precisely characterized, biological dosimeters are applicable as field and personal dosimeters.  相似文献   

2.
Biological monitoring of radiation exposure.   总被引:2,自引:0,他引:2  
Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/ monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.  相似文献   

3.
The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Becton [correction of Beckon] Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.  相似文献   

4.
Radiation in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and the silicon detectors in various configurations; the preferred passive dosimeters are CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET and thermoluminescence dosimeters (TLDs) as well as optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation field for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the role of high LET radiation in radiobiology, the operational principles for the different dosimeters, the LET spectrum method using CR-39 detectors, the method to combine the results measured with TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured and combined.  相似文献   

5.
The major effect of stratospheric ozone loss will be an increase in the amount of ultraviolet radiation reaching the ground. This increase will be entirely contained within the UV-B (290–320nm). How this will impact life on Earth will be determined by the UV-B photobiology of exposed organisms, including humans. One of the analytical methods useful in estimating these effects is Action Spectroscopy (biological effect as a function of wavelength). Carefully constructed action spectra will allow us to partially predict the increase in bio-effect due to additional UV exposure. What effect this has on the organism and the system in which the organism resides is of paramount importance. Suitable action spectra already exist for human skin cancer, human cell mutation and killing, and for one immune response. Comprehensive and widely applicable action spectra for terrestrial and aquatic plant responses are being generated but are not yet suitable for extensive analysis. There is little data available for animals, other than those experiments completed in the laboratory as model systems for human studies. Some polychromatic action spectra have proven useful in determining the possible impact of ozone loss on biological systems. The pitfalls and limits of this approach will be addressed.  相似文献   

6.
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.  相似文献   

7.
Radiative and dynamical impacts of Arctic and Antarctic ozone holes on the general circulation are investigated with the aid of a general circulation model developed at Kyushu University. The model includes a simplified ozone photochemistry interactively coupled with radiation and dynamics. Resultant temperature structure consisting of a cooling in the polar lower stratosphere and a warming in the polar upper stratosphere brings about the intensification of the polar night jet. The cooling is caused by the decrease of solar ultraviolet heating due to the ozone depletion, while the warming is caused by adiabatic heating due to the enhancement of downward motion.  相似文献   

8.
Estimation of exposure due to environmental and other sources of radiations of high-LET and low-LET is of interest in radiobiology and radiation protection for risk assessment. To account for the differences in effectiveness of different types of radiations various parameters have been used. However, the relative inadequacy of the commonly used parameters, including dose, fluence, linear energy transfer, lineal energy, specific energy and quality factor, has been made manifest by the biological importance of the microscopic track structure and primary modes of interaction. Monte Carlo track structure simulations have been used to calculate the frequency of energy deposition by radiations of high- and low-LET in target sizes similar to DNA and higher order genomic structure. Tracks of monoenergetic heavy ions and electrons were constructed by following the molecular interaction-by-interaction histories of the particles down to 10 eV. Subsequently, geometrical models of these assumed biological targets were randomly exposed to the radiation tracks and the frequency of energy depositions obtained were normalized to unit dose in unit density liquid water (l0(3) kg m-3). From these data and a more sophisticated model of the DNA, absolute yields of both single- and double-strand breaks expressed in number of breaks per dalton per Gray were obtained and compared with the measured yields. The relative biological effectiveness (RBE) for energy depositions in cylindrical targets has been calculated using 100 keV electrons as the reference radiation assuming the electron track-ends contribution is similar to that in 250 kV X-ray or Co60 gamma-ray irradiations.  相似文献   

9.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

10.
After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.  相似文献   

11.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

12.
The chemistry-climate model SOCOL has been applied for the study of ozone and temperature anomalies during 1979–1993. Temperature and ozone anomalies have been obtained for a set of model runs forced by all major stratospheric forcing mechanisms. Forcings have been prescribed separately and together to assess their individual influence on stratospheric ozone and temperature. The results of these simulations have been compared to available satellite data. The model captures well ozone depletion and cooling in the upper stratosphere due to increases in the abundance of greenhouse gases and ozone depleting substances in the atmosphere. In the lower stratosphere, the model reproduces the warming over tropical and middle latitudes caused by the El-Chichon and Pinatubo eruptions. However, the simulated ozone response is overestimated in comparison with SAGE data. The best agreement with observations has been obtained for the run with all forcings included. This emphasizes the importance of the volcanic and solar forcings for the correct reproduction of observed trends. Comparison of near-global total ozone anomalies confirms an overestimation of ozone depletion just after volcanic eruptions, while the overall agreement with the model is fairly good.  相似文献   

13.
The experiment was flown in different locations inside BIORACK on the D1 mission. It contained different plastic detectors (cellulose nitrate, Lexan, and CR 39) and emulsions to measure the high LET components of the radiation environment. For low LET measurements thermoluminescence dosimeters (L iF) were used. The paper gives data about total dose, charge, energy, and LET spectra so far obtained. These data are compared with data of previous spaceflights.  相似文献   

14.
The radiation environment in the troposphere of the Earth is governed by cosmic rays of galactic and solar origin. During major solar energetic particles events the radiation environment changes dramatically. As a results the risk of biological effects due to exposure to ionizing radiation of aircrew increases. Here we present a numerical model for computation of absorbed dose in air due to cosmic rays of galactic and solar origin. It is applied for computation of radiation environment at flight altitude in the equatorial region during several major ground level enhancements, namely GLE65 on 28 October 2003, GLE69 on 20 January 2005 and GLE70 on 13 December 2006. The model is based on a full Monte Carlo simulation of cosmic ray induced atmospheric cascade. The cascade simulation is carried out with CORSIKA 6.990 code with corresponding hadron generators FLUKA 2011 and QGSJET II. The contribution of different cascade components, namely electromagnetic, hadron and muon is explicitly obtained. The spectra of arriving solar energetic particles are calculated from ground level measurements with neutron monitors and satellite data from GOES. The obtained results are discussed.  相似文献   

15.
The TIROS-N operational meteorological satellite observing system will have the capability of determining global ozone amounts from two instruments by 1985. The TIROS Operational Vertical Sounder (TOVS) yields total ozone amounts through measurements of atmospheric infrared radiances. The Solar Backscatter Ultraviolet (SBUV/2) spectrometer yields total ozone amounts and vertical ozone profiles through measurements of the solar ultraviolet radiation backscattered by the atmosphere. The current operations plan calls for single satellites containing both instruments system with local afternoon equator crossing times. They will be launched at approximately 18 month intervals.The satellite ozone products will require verification using commonly accepted references. For total ozone, Dobson spectrophotometer determinations are to be used. For vertical profiles, no clear choice now exists among balloon-launched chemical sondes, rocket-launched optical sondes or Dobson Umkehr measurements. The applicability and use of these measurement systems are discussed with emphasis on the need for the verification data consistent with the operational satellite lifetimes.Another major source of data for verification is other satellite systems. Comparisons of vertical ozone profiles from several concurrent satellites is discussed. This includes results from SAGE, LIMS and SBUV.  相似文献   

16.
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year.  相似文献   

17.
Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.  相似文献   

18.
Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.  相似文献   

19.
A two-dimensional dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the changes of the Earth's ozone layer occurred during the 21st and 22nd solar cycles. The calculated global total ozone changes in the latitude range 60°S—60°N caused by 11-year variation of solar UV radiation, volcanic eruptions, and anthropogenic atmospheric pollution containing CO2, CH4, N2O and chlorine and bromine species are in a rather good agreement with the observed global ozone trend. The calculations show that the anthropogenic pollution of the atmosphere is a main reason of the ozone depletion observed during the last two solar cycles. However, the 11-year solar UV variation as well as volcanic eruptions of El Chichon and Mt. Pinatubo also gave a significant contribution to the observed global ozone changes.  相似文献   

20.
The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for ‘sunbathing’ is dangerous and should be avoided even for short exposure periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号