首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
文章叙述了平流层飞艇要经历的对流层和平流层的环境特点,对平流层飞艇的环境控制进行了分析,并提出了环境控制的几个注意问题。  相似文献   

2.
平流层飞艇的环境控制   总被引:6,自引:0,他引:6  
文章叙述了平流层飞艇要经历的对流层和平流层的环境特点,对平流层飞艇的环境控制进行了分析,并提出了环境控制的几个注意问题。  相似文献   

3.
平流层飞艇控制与推进技术   总被引:4,自引:0,他引:4  
飞艇作为平流层平台可以实现无线通信、空间观测、大气测量以及军事侦察等目的。本文主要结合平流层的环境特点对平流层飞艇动力推进系统的组成和概念进行初步分析,并对飞艇在升空、浮空、回收过程中的飞行控制策略进行探讨,同时简要分析了控制系统的组成、控制难点和飞艇应急控制问题。  相似文献   

4.
平流层飞艇蒙皮材料的研究   总被引:2,自引:0,他引:2  
文章介绍了飞艇蒙皮材料的组成与选择,并对当前平流层飞艇研制中有关材料方面的某些问题,如飞艇主结构层材料的组成与特性、飞艇内外气囊材料的膜材、纤维的配置织法、主结构纤维的涂层前工艺、飞艇气囊膜片的连接等方面进行了分析与介绍。以供在研制平流层飞艇的膜材时作参考。  相似文献   

5.
平流层飞艇优化方法和设计参数敏感性分析   总被引:2,自引:0,他引:2  
姚伟  李勇  王文隽  郑威 《宇航学报》2007,28(6):1524-1528
平流层飞艇优化设计对飞艇体积、重量、成本、工作能力、承载能力等有重要影响。提出采用总重最小的优化目标对平流层飞艇进行优化,给出了平流层飞艇总体参数估算方法,建立了平流层飞艇优化流程,编制了计算程序,并对平流层飞艇进行了尺寸优化。分析表明:(1)为达到最小代价(总重或成本)的目标,平流层飞艇设计不能片面追求阻力最小或者浮力最大,应综合考虑浮力与推力,进行尺寸优化;(2)平流层飞艇运行地理纬度、在一年中的运行时段、抗风能力、有效载荷重量、再生燃料电池比能量、蒙皮比重量等参数对飞艇优化设计尺寸有重要的影响。  相似文献   

6.
平流层飞艇作为执行高空长航时任务的平台近年来引起了全球范围的关注。平流层飞艇运行的技术难题之一就是其在定点保持模式下的自主定位和定姿问题。本文率先建立了平流层飞艇定点保持模式的动力学模型,在此基础上,采用李雅普诺夫(Lyapunov)稳定性理论针对平流层飞艇定点保持模式的非线性系统设计了一种非线性控制律,并证明了所得到的闭环系统是全局渐近稳定的。通过数学仿真验证了该控制方法对非线性系统控制的有效性。  相似文献   

7.
文章针对平流层飞艇驻空阶段航迹规划问题进行研究和仿真分析.考虑平流层飞艇自身飞行的特点,建立其运动学方程和风场模型,并在适当假设基础上,构造能够反映其飞行能耗的代价函数.最后采用遗传算法进行算例计算,求解平流层飞艇最优轨迹.仿真结果表明,遗传算法能够有效、快速地收敛并稳定至问题的最优解;其所构造的代价函数能够反映飞艇自...  相似文献   

8.
针对平流层飞艇的飞行特点,提出SINS/GPS/陆标组合导航方法,给出SINS/陆标组合导航的观测模型,并将状态与偏差分离的估计算法与联邦滤波相结合,应用于SINS/GPS/陆标组合导航系统.数学仿真结果表明:新组合导航系统相对于SINS/GPS组合导航系统可以有效改善平台误差角的估计精度,同时,提出的简化状态与偏差分离联邦滤波算法能在保持滤波精度基本不变的前提下减少计算量.  相似文献   

9.
文章从介绍平流层飞艇的结构健康监测定义入手,说明了该系统研究的作用和意义以及工作原理。在分析平流层飞艇运行环境和结构可能的损伤模式的基础上,从工程应用角度出发,对结构健康监测系统方案展开了研究,探讨了平流层飞艇结构健康监测系统中的一些关键因素,为今后结构健康监测系统设计提供参考。  相似文献   

10.
平流层飞艇定点保持模式的建模与稳定性分析   总被引:1,自引:0,他引:1  
梁栋  李勇 《航天器工程》2007,16(4):108-113
平流层飞艇作为一种新型的通信和观测等应用平台受到世界各国越来越多的重视,定点保持模式是平流层飞艇的飞行任务中很重要的一环。该模式下的控制系统与平飞模式下的传统舵面、螺旋桨控制系统相比具有较大的特殊性。文章建立了平流层飞艇定点保持模式的动力学模型,并分析了模型中假设的控制输入即矢量推力螺旋桨执行机构所产生的控制力和力矩在物理实现上的可行性。在此基础上,采用李雅普诺夫(Lyapunov)近似理论对无控制输入系统进行了稳定性分析,得出系统在无控制输入时是不稳定的,最后通过仿真验证了分析结果。  相似文献   

11.
针对高超声速飞行器纵向模型的高度非线性特点,在考虑模型不确定性的情况下,提出了高超声速飞行器动态神经网络调节函数反推自适应控制方法.对给定的速度指令,引入积分型Lyapunov函数设计跟踪控制器,取消了控制增益一阶导数上界的限制,且避免了控制器的奇异性;对给定的高度指令,引入调节函数技术,设计了反推控制器,避免了将模型化为严反馈形式;采用动态神经网络对未知系统动态进行自适应在线逼近.根据Lyapunov理论证明了设计的控制律保证了闭环系统的稳定性与指令跟踪的精确性.仿真结果验证了该方法的可行性及有效性.  相似文献   

12.
周丽  姜长生  钱承山 《宇航学报》2008,29(6):1888-1894
针对不确定严格反馈块控非线性系统,提出了一种快速回馈递推自适应控制方法。系 统的不确定性及外界干扰由RBF神经网络在线逼近,利用动态面控制技术简化回馈递推方法 的控制律,同时改进参数自适应律,使在线调整自适应参数显著减少,提高了控制算法的计 算效率。基于Lyapunov方法证明了闭环系统所有信号有界,跟踪误差指数收敛到有界紧集内 。最后进行了空天飞行器飞行控制系统设计,并在高超声速的条件下对其进行了仿真验证, 结果表明了该方法的有效性。  相似文献   

13.
平流层气球轨迹控制系统平衡点估算研究   总被引:2,自引:0,他引:2  
简单介绍了平流层气球的特点和研究现状,引出并描述了轨迹控制系统,它几乎无需消耗能源,使长耗时平流层平台成为可能。提出了平流层气球轨迹控制飞行系统的仿真模型,并分别从风速轮廓线、大气密度以及气球、绳和集成翼方面逐一详细分析并进行建模,最后分析了整个飞行系统的特点和求解系统平衡点的难点所在,提出了一种可行的平衡点估算方法。结果表明,该平衡点估算方法可以快速有效地求得整个飞行系统的平衡点。  相似文献   

14.
针对水下自主航天器AUV水平面的轨迹跟踪问题,建立时变外界干扰条件下的运动学模型以及动力学模型,将地面误差变量转换为艇体坐标变量,并推导得出其误差方程。基于Lyapunov稳定性理论研究反步滑模控制的相关算法,设计出时变干扰下的欠驱动AUV水平面轨迹跟踪控制器,最后分析了闭环控制系统中误差信号受到扰动时跟踪误差的敛散性。利用MATLAB/Simulink软件进行仿真实验,得出时变干扰作用下AUV对期望轨迹的跟踪情况,经实验验证本文设计的反步滑模控制器能有效地跟踪复杂轨迹,具有较强的稳定性和鲁棒性。  相似文献   

15.
风场综合利用的新型平流层浮空器轨迹设计   总被引:2,自引:0,他引:2       下载免费PDF全文
针对平流层底部准零风层特点,提出一种基于风场综合利用进行长时区域驻空的新型平流层浮空器,系统采用南瓜形超压气球体制,建立系统的浮重模型、推阻模型和能源模型,利用迭代算法完成了总体方案设计。在此基础上,建立动力学模型和高度调控模型,针对我国某地风场模型,设计东西、南北方向独立控制区域驻留策略以及基于风场综合利用的协同控制区域驻留策略,通过SIMULINK模块开展区域驻留仿真,并对五种控制模式下的飞行轨迹进行对比分析。  相似文献   

16.
为智能化导弹所设计的导弹智能控制系统应能够充分利用战场信息,自主而准确地生成控制指令完成目标打击。首先建立导弹控制系统模型,并在特征点处设计符合性能要求的PID控制器。在深入分析径向基函数(RBF)网络的结构与训练方法的基础上,通过大量仿真数据对RBF网络进行离线训练,将其训练结果直接作为俯仰与偏航通道的控制器。而滚转通道为典型的2阶系统,可采用滑模控制律,并利用RBF网络实时逼近外界非线性干扰项以提高滑模控制器的性能。通过某型倾斜转弯导弹六自由度仿真说明了本文所设计的智能控制系统的有效性。  相似文献   

17.
针对存在参数摄动和外部干扰等不确定性的高超声速飞行器模型,提出一种基于新型跟踪微分器的鲁棒反演控制方法。利用正切sigmoid函数和终端吸引子函数设计跟踪微分器,通过扫频测试得到了参数整定规则,并进行了对比仿真试验。在此基础上,构造一种非线性干扰观测器对模型的不确定项进行估计,增强了控制器的鲁棒性;并利用所设计的跟踪微分器对虚拟控制量进行滤波处理,解决了传统反演控制的“微分项膨胀”问题。最后,通过仿真校验了所设计控制器的有效性。  相似文献   

18.
针对航空发动机是一个具有强非线性、时变不确定性的被控对象,提出了一种基于RBF网络的航空发动机多变量神经网络自适应控制方法,该方法采用RBF网络对发动机非线性模型进行实时辨识,并将系统的灵敏度信息反馈给神经网络控制器,保证了控制器对被控对象的准确控制.通过某涡扇发动机在飞行包线内的数字仿真,结果表明该方法不依赖被控对象的精确模型,有效地实现了对发动机的多变量自适应控制,而且具有较好的动静态性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号