首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
加力燃油泵压出室非设计工况内流特征数值模拟   总被引:2,自引:2,他引:0  
针对某型航空发动机加力燃油泵隔舌空蚀破坏,采用滑移网格技术模拟泵内非定常流场,揭示了压出室在典型非设计工况下的内流特征,研究了隔舌处的空化机理.计算结果表明:大流量工况,扩散管锥形段存在大小两个分离涡,而环形腔室隔舌段燃油以相切方式流经隔舌壁面,无明显流动分离,不会发生空化;而小流量工况,扩散管锥形段内两分离涡扩展到大部分区域,右半侧部分阻滞燃油在反向流向涡作用下,绕流隔舌上部,在隔舌下游形成了明显分离涡,导致隔舌壁面静压急剧降低,进而引发空化,产生空蚀破坏.   相似文献   

2.
对带有周向前弯和周向后弯叶片的低压轴流风机,采用壁面动态压力测量技术试验研究了小流量工况下叶顶泄漏流的频谱特性。在机匣壁面布置动态压力传感器捕捉由泄漏流诱发的壁面压力信号,基于测量结果详细阐述了小流量工况下周向弯曲叶片叶顶泄漏流诱发的流动不稳定性。结果表明:随流量的降低,泄漏涡引起的频率分量逐步凸显,并向更低频段转移,具有明显的宽频特性;周向弯曲叶片控制了泄漏流动从前缘至尾缘的传播速度,前弯叶轮的泄漏流动传播速度最慢,后弯叶轮次之;周向弯曲叶片对叶顶泄漏流诱发的不稳定流动具有控制作用。  相似文献   

3.
为计算大型捆绑火箭助推器头部的脉动压力,对直头锥、斜头锥2种典型助推器头部外形流场开展了流场仿真,获得了流场规律及脉动压力,重点模拟了激波/边界层干扰导致的分离流动及激波在附近物面的往复振荡现象,获得了脉动压力结果。研究表明:对于直头锥、斜头锥2种不同外形的助推器,最大均方根脉动压力系数出现的马赫数和量级均不同,与芯级干扰的程度也不同,但二者的能量都集中于低频,且随着马赫数的增大,跨音速效应均明显减少。  相似文献   

4.
带根部间隙的直、弯压气机静叶流场的实验   总被引:1,自引:0,他引:1       下载免费PDF全文
为了获得正弯静叶在动态压气机中的性能特点,分别对采用带根部间隙的直静叶和正弯静叶的重复级低速轴流压气机在不同流量工况下的静叶出口流场进行了实验测量,结果表明,正弯静叶对气流的扩压能力在设计工况和近喘工况下强于直静叶,在最大流量工况下弱于后者。设计工况下,流道内存在的两个主要旋涡结构,分别为上通道涡和刮削涡,且刮削涡在正弯静叶流道内的尺度要远小于直静叶流道中;最大流量工况下直静叶流道中的刮削涡明显增大而正弯静叶中则基本保持不变;近喘工况下分离严重,旋涡随之消失。考查出口气流角可以发现,正弯静叶对气流的折转能力在整个流量工况下都弱于直静叶,但沿叶高的分布更为均匀。  相似文献   

5.
不同进口截面下液力透平非定常压力脉动计算   总被引:1,自引:1,他引:0  
为了研究不同进口截面对液力透平内压力脉动的影响,利用CFX软件对一单级液力透平进行非定常数值计算,通过设置监测点,计算各监测点在不同进口截面下的压力脉动,通过快速傅里叶变换将其压力脉动计算结果做相应分析,分析各监测点处压力脉动的时域和频域分布.结果表明:蜗壳内在大蜗壳进口下,随着蜗壳进口直径的增加,每个监测点处的压力逐渐增加,而在小蜗壳进口下,每个监测点处的压力逐渐减小.在距离蜗壳收缩管较远处,大蜗壳进口下的压力脉动较小,而在距离收缩管较近处,小蜗壳进口下的压力脉动较小.在叶轮内不同进口截面压力脉动的差异在同一时刻从进口到出口逐渐减小.尾水管内在小蜗壳进口下尾水管进口处的压力脉动最大.   相似文献   

6.
采用数值方法研究了出口宽高比及旋流角对基于真实排气混合器构型的双涵道S弯喷管内/外流场温度分布的影响.结果显示:在圆转方弯曲构型的作用下,波瓣混合器及尾锥诱导产生的流向涡在第二弯通道及等直段内部卷吸着热流冲击S弯喷管壁面形成"热斑".在完全遮挡高温部件准则的约束下,随着出口宽高比的增加,S弯喷管壁面的"热斑"温度先增大...  相似文献   

7.
布置有多层孔板(丝网)的大开角扩散段通过参数的优化设计,可有效缩短暂冲式风洞启动时间,均匀进入稳定段的气流速度,并降低阀后噪声和气流脉动。针对某大型暂冲式风洞大开角扩散段设计关键技术开展专题研究,设计并进行了不同扩散段扩开角角度和中心体分流锥型式的组合实验,从压力损失、出口截面速度分布和降噪特性三个方面进行了对比分析。试验结果表明:试验件45°扩开角+65°平底锥的压力损失相对最小,而增加导流尾锥的中心分流锥由于底部难以形成稳态的分离涡使得其压力损失明显偏大,其它试验件组合的压力损失值则相接近;各试验件出口截面的速压分布均呈现以中轴线对称分布的双驼峰趋势,且孔板的开孔率偏高时出口剖面速度分布相对更平滑;试验马赫数下的大开角段对气流噪声的消声量约为12~14dB,对频率在2kHz以上的气流噪声具有相对较强的消声能力,同时气流经过设置有多层孔板的大开角扩散段后,气流波动幅值明显降低,气流脉动得到有效地抑制。  相似文献   

8.
仿生学翼型尾缘锯齿降噪机理   总被引:1,自引:0,他引:1  
仝帆  乔渭阳  王良锋  纪良  王勋年 《航空学报》2015,36(9):2911-2922
采用大涡模拟与声类比的方法研究了尾缘锯齿对翼型自噪声的影响。以SD2030翼型为研究对象,设计的尾缘锯齿幅值为10%弦长,周期为4%弦长。模拟了来流速度为31 m/s、0° 攻角下直尾缘翼型与锯齿尾缘翼型的流场,对应的基于弦长的雷诺数约为310 000。详细分析了尾缘锯齿对翼型尾缘湍流流场的影响,并通过FW-H方程计算大涡模拟提取的声源项,得到直尾缘翼型与锯齿尾缘翼型的声场。研究发现,锯齿尾缘可以明显降低翼型中低频范围内的噪声,在4 000 Hz以下,窄带噪声最多可降低约16 dB。但尾缘锯齿对翼型气动性能有着不利影响。进一步研究表明,该状态下翼型噪声主要由层流边界层引起的涡脱落噪声主导,尾缘锯齿可以抑制层流边界层引起的涡脱落现象,降低翼型升力脉动与尾缘附近的表面压力脉动,减弱尾缘处的低频湍流脉动与涡量,并有效降低尾缘附近涡的展向相关性,这些因素的综合作用使得翼型自噪声降低。  相似文献   

9.
加力燃油泵隔舌倒圆抑制分离的数值模拟   总被引:1,自引:1,他引:0  
薛梅新  朴英 《航空动力学报》2012,27(12):2799-2804
采用动态亚格子应力模型对加力燃油泵内非定常流场进行大涡模拟,探讨了原隔舌空蚀机理,并研究了不同倒圆半径下泵隔舌附近的瞬时流动规律及流量扬程特性.计算结果表明:小流量工况原隔舌处分离产生的强剪切涡会诱发空化,涡脱落形成的分离再附位置与空蚀破坏核心区域相符;小流量工况下,隔舌倒圆在扩散管内形成转向涡,消除了隔舌壁面分离绕流及附着剪切涡,4mm倒圆半径可以避免空化;设计流量范围内隔舌倒圆提高了泵出口扬程,流量越小扬程增幅越大,小流量工况时扬程增幅达3%.   相似文献   

10.
涡轮泵非设计工况压力脉动数值研究   总被引:3,自引:2,他引:1       下载免费PDF全文
涡轮泵工作时要求在较宽转速范围内运行稳定,但实验中涡轮泵的泵部件在0.75Q BEP工况下出现异常振动,由于结构限制,直接通过实验检测内部流动特性较困难。为探究其振动原因,采用SST湍流模型并考虑空化对该泵进行定常和非定常模拟,分析其内部流场和压力脉动特性。研究发现0.75Q BEP工况靠近正斜率不稳定区,离心轮流道内存在回流、漩涡等不良流态;诱导轮和离心轮进口有空化现象发生。离心轮进口处空化引发的压力脉动在500~1440Hz范围内连续分布,动静干涉引发的压力脉动以转频、叶频及两者的倍频为主。改变诱导轮与离心轮轴向间隙对诱导轮与离心轮之间的压力脉动影响较为明显,对其他位置压力脉动影响较小,当间隙扩大到5mm左右时能在一定程度上改善0.75Q BEP工况的异常振动。  相似文献   

11.
孙鹏  周莉  王占学 《推进技术》2022,43(6):117-127
为了明晰出口宽高比对基于真实排气混合器构型的S弯喷管流动特性的影响机制,数值模拟了不同出口宽高比下的双S弯喷管内/外流特性。结果表明:出口宽高比对排气混合器附近的流场特征影响较小,但增加出口宽高比导致喷管下游纵向转弯处的涡量减小,而涡的横向运动更加剧烈,由此带来的涡损失及内/外涵掺混损失沿纵向有所减小,沿横向持续增大。随着出口宽高比的增加,纵向两弯处及等直段区域的壁面剪切应力减小,相应的摩擦损失和局部损失降低;而上、下壁面极限流线的扩张-汇聚程度增强使得该区域的摩擦损失增大。宽高比的增加导致喷管出口附近气流的轴向速度逐渐增大,出口下游的尾喷流速度核心区长度逐渐缩短。不同出口宽高比条件下,喷管几何构型与排气混合器相互作用产生的多种流动损失的变化趋势相反,综合起来对S弯喷管的气动性能影响较小。  相似文献   

12.
实验对不同冲角下三种叶型折转角环形压气机直、弯叶栅进、出口流场进行了详细的测量,并利用实验结果对数值模拟结果进行了校核,得到了详细的直、弯叶栅流道内的计算结果。结果表明,大折转角叶栅流道内旋涡由多涡结构向单一涡结构转变的趋势明显,叶片正弯使得流道内近吸力面的涡系径向掺混作用加强;叶展中部流动分离的加重导致集中涡系破裂,从而引起流道内气流的严重堵塞,这是损失激增的主要原因,因此,要在高负荷压气机叶栅中应用正弯叶片,必须有效抑制中部流动的恶化。  相似文献   

13.
数值研究不同的减涡管长度、鼓筒孔周向位置及鼓筒孔结构对管式减涡器系统减阻性能的影响。结果表明,特定工况下存在最优管长使得系统进出口总压比最小,不同管长减涡管系统的主要压力损失来自于不同部分。其中,减涡管较短时压力损失主要来自于减涡管入口处,减涡管较长时压力损失来自于管内摩擦损失。鼓筒孔周向位置对盘腔内气流流动特性的影响较小,对总压比的影响可以忽略。鼓筒孔结构对减阻效果的影响较大。在所研究的三种鼓筒孔结构中,鼓筒孔开孔在周向上越长其总压比越小,鼓筒孔变为贯通缝时最优管长减小。  相似文献   

14.
在北航的水槽和风洞中进行了加装翼刀的75°后掠双立尾/三角翼的立尾抖振实验,目的是研究翼刀对立尾抖振的影响。采用了流动显示、立尾表面动态压力测量、激光测立尾顶部加速度的实验来检验翼刀对立尾抖振减缓的效果。流动显示的实验结果表明三角翼前缘涡涡核从翼刀上方经过时,会提前破裂,这在一定程度上减弱了前缘涡。激光测立尾顶部加速度实验的结果表明,在28°到48°这段立尾抖振比较显著的迎角范围内,B1立尾位置的立尾抖振强度曲线比无翼刀的曲线数值上有明显的减小,抖振得到一定的改善。立尾表面动态压力的脉动强度也有明显的减小,频谱分析也能得到前缘涡提前破裂的结论,前缘涡的提前破裂起到了减缓立尾抖振作用。  相似文献   

15.
为了研究鼓包对立尾抖振的影响,在北航的水槽和风洞中进行了在机翼头部放置了鼓包的75°后掠双立尾-三角翼的立尾抖振实验,采用了流动显示、立尾表面动态压力测量、激光测立尾顶部加速度的实验来检验鼓包对立尾抖振减缓的效果。流动显示的实验结果表明三角翼机翼头部加上鼓包后,前缘涡涡核会发生弯曲和扭转,这在一定程度上减弱了前缘涡。激光测立尾顶部加速度实验的结果表明,在25°到48°这段立尾抖振比较显著的迎角范围内,A1立尾位置的立尾抖振强度曲线比无鼓包的曲线数值上有明显的减小,抖振得到一定的改善。立尾表面动态压力的脉动强度也有明显的减小,前缘涡涡核的弯曲和扭转起到了减缓立尾抖振的作用。  相似文献   

16.
对轴流压气机转子机匣壁面静压进行动态测量,采用小波分析方法处理近失速工况动态压力测量信号,功率谱显示在与二次涡相近的频率上存在较高的能量带,能量峰值沿轴向的衰减与二次涡的变化规律相符,表明二次涡在流场中存在是可能的。针对相同转子进行全通道非定常数值模拟,计算结果表明,近失速工况下,转子圆周每个通道叶顶附近均存在规律一致的二次涡运动。叶片中后段间隙泄漏流与间隙泄漏涡破碎产生的低能流体相互作用,在泄漏涡破碎形成的堵塞区域中形成二次涡。二次涡运动使得近叶顶载荷分布发生变化,从而导致近叶顶流场出现了一种周期性的自维持的非定常流动现象。  相似文献   

17.
王凯  龚永祥  罗光钊  刘厚林  王玥  王航 《推进技术》2022,43(10):299-312
为揭示高速燃油离心泵内部空化形态及隔舌区域空化的发生工况,对其进行了非定常数值计算,分析了不同流量下高速燃油泵内空化流场特性及压力瞬态特性。结果表明:在不同流量下,空泡首先在叶片前缘生成;随着空化数降低,空泡在叶片根部及延伸叶片背面产生;在1.2倍设计流量下隔舌区域的空化在低空化数下发生;空化对叶片表面根部的压力载荷影响较大;叶轮流道监测点压力脉动主频为叶轮轴频;隔舌监测点脉动主频为叶频,在1.2倍设计流量下的低空化数下隔舌区域监测点压力脉动频谱上轴频倍频特征增强。  相似文献   

18.
对带有周向前弯和周向后弯叶片的低压轴流风机,采用PIV技术测量小流量工况下叶顶区域瞬态速度场。基于小流量压力峰值工况下的瞬态测量结果,详细阐述了周向弯曲叶片叶顶泄漏涡的演化过程。结果表明:小流量压力峰值工况下,周向弯曲叶片叶顶泄漏涡存在瞬态特性,泄漏涡起源向前缘方向迁移,涡核在向下游发展的过程中不断破碎,沿端壁向通道中部迁移,并发生径向迁移;周向后弯叶片的泄漏涡较周向前弯叶片迁移明显,涡核破碎过程剧烈;周向前弯叶片有利于叶顶泄漏涡的控制。  相似文献   

19.
对一单级跨声速压气机设计工况下采用了3种弯、掠动叶后的非定常流场进行了数值模拟,分析了动叶弯、掠对动叶尾迹的非定常脉动强度以及向下游输运特性的影响.研究结果表明:与原型动叶相比,3种弯、掠动叶都减弱了动叶出口的泄漏涡和尾迹顶部脉动核心的脉动强度,使其在向下游输运过程中耗散较快;3种弯、掠动叶尾迹的中间段的脉动强度都有所加强,并且在输运过程中有向根部迁移的趋势,从而会使静叶的中部和根部受到较强的扰动.   相似文献   

20.
具有叶顶间隙的涡轮正弯叶栅流场的拓扑与旋涡结构   总被引:2,自引:0,他引:2  
为进一步揭示在具有间隙的涡轮叶栅中叶片正弯降低泄漏损失的机理,采用微型束状与球头五孔测针详细测量了直叶栅和正弯叶栅间隙内和诸横截面流场听气动参数,并对壁面进行了墨迹显示。根据测量与显示结果,应用拓扑学原理分析了壁面与横截面流动的拓扑结构,推测出叶栅内流场的旋涡结构。分析结果表明,在直叶栅中存在着七条分离线与七大集中涡系,它们分别为上端壁叶顶进口吸力边与压力边马蹄涡,泄漏损失的机理,下端壁进口边马蹄  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号