共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
本文采用威布尔分布来描述超高强度钢制成的固体火箭发动机金属壳体的破坏压力分布.由最小二乘法求得威布尔分布的三个参数值后,按照应力强度模型估算了固体火箭发动机壳体的结构可靠性. 相似文献
4.
固体火箭发动机柔性接头拉伸载荷下强度分析 总被引:2,自引:0,他引:2
柔性接头是固体火箭发动机摆动喷管的执行部件,由若干同心的环状球体的弹性件、增强件以及前后法兰相互交替地粘接在一起而成,采用轴对称有限元法对柔性接头在拉伸载荷下进行了强度分析,得到了在0.5MPa弹射压强的拉伸载荷作用下柔性接头应力分布,由此计算弹性件与增强件之间界面最大拉应力及层间剪应力分别为2.34MPa和0.28MPa,界面粘接强度满足使用要求。 相似文献
5.
本文针对纤维缠绕玻璃钢材料和成型工艺特点,从材料基本性能数据出发,确定固体火箭发动机玻璃钢壳体设计的工程计算方法,比较简明的计算代替复合材料壳体复杂的理论计算;同时,结合产品使用中的有关试验结果,分析了所设计的玻璃钢壳体发动机的强度可靠性问题。 相似文献
6.
本文论述了固体火箭发动机纤维缠绕壳体防静电、防老化的措施,并结合潘兴-2等典型事例,提出针对我国这方面技术发展的几点看法。 相似文献
7.
通过设计、制作Ф200缩比模拟试验件,对缩比模拟试验件进行加速老化,然后对加速老化试验前后的试验件进行外气密试验、轴压破坏试验、内压爆破试验,探究复合材料壳体的贮存使用性能。 相似文献
8.
以某固体火箭发动机喷管为例,研究其旋转情况下的流动、传热及热结构响应性能。利用雷诺应力湍流模型,结合增强型壁面函数,求解N-S方程。以喷管内壁面温度分布为边界条件,求解二维轴对称瞬态热传导方程。将瞬态温度场按时间步长加载,进行瞬态静力学分析,得到不同转速下的流场、温度场及应力场。结果表明,喷管在旋转情况下,喷管内壁面尤其是喉部及扩张段温度分布在转速为100 r/min及600 r/min左右时变化剧烈;旋转内流场与喷管结构的耦合作用加剧了喷管的传热,尤其是喉衬的烧蚀,特征点温度值随转速增大而升高;最大热应力位于喷管最外层尾端,整体热应力在转速低于100 r/min时得到释放,随着转速的不断增大,喷管整体最大热应力及扩张段特征点应力随之增大,而喉衬特征点由于旋转导致了温度梯度降低,其应力值随之减小。 相似文献
9.
固体火箭发动机喷流噪声测量及声场分析 总被引:1,自引:0,他引:1
为了研究分析固体火箭发动机喷流噪声特性及其声场分布规律,设计实验发动机,采用LMS数据采集系统及噪声处理软件通过传感器对固体火箭发动机喷流噪声进行实验采集和测量分析。实验结果表明:同一测量位置处,随着推进剂燃温的降低,噪声峰值降低;随着燃烧室压力及喷管出口马赫数的增高,噪声峰值升高;该实验工况下,发动机喷流噪声声压级分布在120-140dB,峰值频率4500-5000Hz。实验结果对固体火箭发动机喷流噪声场的预测提供了实验依据。 相似文献
10.
11.
曹翠微%陈伟民%蔡体敏%李敏 《宇航材料工艺》2005,35(6):36-40
针对固体火箭发动机柔性接头中的橡胶材料,研究了在进行这种橡胶结构有限元计算中橡胶材料的力学行为的表征。进行了单轴拉伸与简单剪切材料力学性能试验,根据不同材料模型对试验曲线进行了拟合,并用MSC/Marc软件模拟了超弹性材料的单轴拉伸与简单剪切变形过程。结果表明:采用单轴拉伸试验数据预测材料剪切性能会造成明显误差,而简单剪切试验得到的模型可以比较准确描述材料的拉伸和剪切变形,针对柔性接头这种以剪切变形为主的结构,应选取剪切试验数据;当应变大于150%时,不同材料模型与试验数据的选用范围对计算结果具有明显影响。 相似文献
12.
阐述了国内外近年来进行固体火箭发动机健康监测技术研究的进展和面临的问题,针对我国的实际情况,提出了在该领域开展研究和应用工作中的两点建议。 相似文献
13.
14.
树脂传递模塑工艺(RTM)可实现复合材料承力构件高表面质量净尺寸成型。以A配方为树脂基体、3K缎纹碳布为增强材料,采用RTM工艺制备了固体火箭发动机壳体复合裙。分析了A配方的RTM工艺特性及树脂浇铸体性能,介绍了复合裙注射模具和注射设备,讨论了RTM工艺参数及复合裙材料性能。结果表明:RTM复合裙纤维体积分数达54. 5%,联合载荷(轴压+弯矩)条件下轴压达748 kN,弯矩达94 N·m;纯轴压载荷达1 062 kN,纯弯矩载荷达143. 1 N·m,壳体复合裙整体强度高,满足设计和使用要求。 相似文献
15.
采用理论分析和试验验证相结合的方法,揭示了过载条件下固体火箭发动机横向过载产生的原因,分析了燃气科氏加速度的影响因素。结果表明,发动机的横向过载是燃气科氏加速度和导弹法向牵连加速度综合作用的结果;燃气科氏加速度与导弹转弯半径呈反比例关系,与导弹速度和燃气速度呈正比例线性关系。地面模拟旋转过载试验结果表明,横向过载将引起Al_2O_3粒子向发动机局部聚集,造成该部位烧蚀加剧,引起喷管收敛段局部烧蚀增大;由于科氏加速度的存在,导致发动机的实际横向过载方向偏离发动机牵连加速度引起的横向过载方向,造成喷管局部烧蚀增大的方向与离心过载方向呈一定的环向偏转角度。 相似文献
16.
17.
18.