共查询到10条相似文献,搜索用时 15 毫秒
1.
为了研究层流甲烷反扩散火焰的光谱特性,采用光纤光谱仪对层流甲烷/空气反扩散火焰中发射谱线分别为314nm和430nm的激发态自由基OH*和CH*进行了光谱特性实验研究,分析了OH*,CH*辐射强度随空气喷嘴出口Re数的变化规律,及其沿反扩散火焰轴向与径向的分布特征。研究表明:甲烷反扩散火焰具有明显的内外双层结构,OH*和CH*辐射强度沿火焰轴向与径向均呈现先增后减的趋势。随着空气流量增大,OH*,CH*分布范围变大,并逐渐向火焰下游扩展。在距喷嘴出口5mm处出现OH*和CH*辐射强度峰值,且峰值的轴向位置不随空气流量增大而改变。 相似文献
2.
为分析非平衡等离子体对空气/甲烷扩散火焰的助燃效果,实验以发射中心谱线430nm的激发态自由基CH*表征火焰燃烧状态,采用同轴圆柱构型激励器在高频交流模式下激发等离子体,分析了火焰CH*自发辐射图像、火焰高度、CH*径向分布和燃烧释热速率等火焰特性在不同空气流量和当量比下随放电电压的变化规律。结果表明:等离子体激励在空气流量较低时,会显著增强火焰上游甲烷燃烧,从而降低CH*空间分布高度和火焰高度;空气流量增大后,有利于促进甲烷充分燃烧,增大火焰下游CH*辐射强度和分布范围。在火焰上游区域,等离子体气动效应可有效扩展甲烷径向分布,实现剪切层更宽范围燃烧,其活化效应会明显提高剪切层燃烧强度,并随电压增大作用效果逐渐增强。此外,等离子体激励会使燃烧器喷嘴出口附近火焰释热速率显著增大,该现象在空气-甲烷动量比较大时更容易发生。 相似文献
3.
4.
用数字粒子图像测速技术(DPIV)测量了扩散火焰周围气流在梯度磁场作用下的速度分布,并与无磁场作用下的速度分布比较。结果表明当梯度磁场作用于扩散火焰时,火焰周围气体运动被加速,火焰的形状变得尖锐,亮度增加。实验定量地验证了梯度磁场可以诱导气体对流的发生,从而进一步推进扩散火焰燃烧反应。 相似文献
5.
为了解微尺度扩散火焰燃烧特性,选用正戊烷、正庚烷、正辛烷、正癸烷、正十二烷五种不同液体烷烃,进行燃烧实验。结果表明:火焰在不同流量下会呈现球型、椭球型、细长型、聚积型以及喷射型;燃料含碳越多,其火焰燃烧极限越小。对于每种烷烃,火焰高度H与Re都呈线性正相关,燃料含碳量越多,火焰高度H随Re变化越小;Roper火焰长度预估模型对于液体烷烃同样适用,实验所得数值与模型的误差在25%以内。火焰管壁温度随流量增大而降低,火焰温度随流量增大而升高,火焰温度与火焰形态有关;不同燃料的管壁温度和火焰温度都随含碳量增大而降低。 相似文献
6.
基于不同PDF的超声速扩散燃烧火焰面模型对比 总被引:1,自引:2,他引:1
为了研究混合分数概率密度函数对湍流扩散燃烧的影响,采用稳态火焰面模型描述超声速扩散燃烧过程,分别采用β-PDF和δ-PDF方法对层流火焰面数据库积分得到两种湍流火焰面数据库,并对比分析了湍流火焰面数据库。结合混合RANS/LES程序,利用DLR氢燃料超燃燃烧室算例进一步对比验证采用不同PDF方法生成的湍流火焰面数据库。研究结果表明,混合分数β分布数据库中间组分随混合分数方差变化大,采用混合分数β分布的算例计算结果脉动速度较大,与实验结果符合得更好。 相似文献
7.
8.
为了研究低旋流火焰中CH*和OH*自由基的辐射特性,设计了开放式低旋流火焰燃烧器,对旋流数为0.45~0.60,甲烷流速为0.33m/s~0.83m/s的甲烷-空气低旋流火焰进行了实验研究。利用ICCD相机和相应滤光片获取了CH*和OH*的化学发光图像,对CH*中的背景光干扰进行了消除,并研究了旋流数和气流速度对两种自由基辐射发光的影响。结果表明,CH*和OH*都主要分布在火焰锋面上,OH*更能表征化学反应的存在;旋流数对燃烧的反应程度、反应位置以及火焰的结构有明显影响,OH*的轴向峰值和旋流数的线性相关系数为0.975,要强于CH*;随气流速度增大,CH*的发光强度减小,而OH*的发光强度明显增大。 相似文献
9.
10.
为研究煤油同轴离心喷嘴的超临界燃烧与火焰特性以及缩进比对燃烧及稳定性的影响,在煤油超临界条件下进行了不同缩进比喷嘴的燃烧实验,实验采用单喷嘴矩形燃烧室,空气和氧气混合物以气态从同轴喷嘴的中心喷嘴喷注,煤油以液态从同轴喷嘴的离心喷嘴喷注,实验利用采样频率为36k Hz的彩色高速CCD相机成功观测到煤油超临界燃烧现象。煤油同轴离心喷嘴超临界燃烧火焰总体呈圆柱射流状;缩进比较大喷嘴的火焰图像中,喷嘴出口为半透明的\"稠密\"气状射流,未观测到明显的雾化破碎过程;喷嘴缩进比为1.62时火焰较窄且出现火焰团间歇性脱落情况;缩进比对燃烧和燃烧稳定性均有影响,存在相对最佳值使燃烧较稳定。 相似文献