共查询到17条相似文献,搜索用时 81 毫秒
1.
提出改进的Huber M方法是以中位数和Huber M方法两种稳健化处理相融合的一种对数据进行稳健化处理的方法.用中位数和数据平均值相似度判断数据是否有变异,根据变异率变化趋势确定变异率.发现在0%~10%变异率范围内,滚动轴承振动数据的连续性和可信度随着变异率的增加而增强.用混沌理论分析滚动轴承的动态特性,发现同一批次的滚动轴承振动有相同的时间延时、嵌入维数、最大Lyapunov指数,其中最大Lyapunov指数均大于0即属于混沌特征,进一步计算最大可预测周期,最大可预测周期为667个单位.滚动轴承振动时间序列物理空间的中位数和相空间的估计关联维数为非线性非单调性的内在运行机制,为滚动轴承振动的动态分析进一步提供可靠的依据. 相似文献
3.
针对工程中航空滚动轴承实时状态监测的需要,提出了基于标准化欧氏距离的多特征融合评估方法。首先,进行了航空滚动轴承故障模拟试验,引入了故障灵敏度的定量评价指标,对融合前后特征的故障灵敏度进行了分析;在此基础上,将所提方法与主分量分析、支持向量数据描述和支持向量分布估计方法相比较;最后,进行了轴承疲劳加速试验,将所提融合方法应用于航空滚动轴承状态监测。试验表明:相比于主分量分析、支持向量数据描述和支持向量分布估计,基于标准化欧氏距离的融合值的故障灵敏度更高;其对不同类型、不同阶段的航空滚动轴承故障更加灵敏,相比于有效值更适合作为航空滚动轴承状态监测的指标。 相似文献
4.
为了实现多重应力下滚动轴承的剩余寿命预测,有效利用不用应力下的退化数据,提出了一种基于加速模型和贝叶斯(Bayesian)理论的滚动轴承剩余寿命预测方法。通过拟合优度检验和威布尔(Weibull)概率图检验法对滚动轴承试验中的数据进行有效性分析。利用switching Kalman filters(SKF)判断滚动轴承各时刻的退化状态。当滚动轴承进入加速退化时,用指数模型拟合轴承退化过程,利用广义线性对数模型表示退化模型参数与应力的关系,根据修正后的轴承实时退化数据利用贝叶斯算法更新模型参数,得到滚动轴承剩余寿命的概率密度函数,从而实现滚动轴承剩余寿命预测。采用XJTU-SY轴承数据集进行验证,预测结果的均方根误差在20 min以内,证明该方法能够有效预测滚动轴承的剩余寿命。 相似文献
5.
基于旋转坐标系转轴振动信号的滚动轴承故障诊断方法 总被引:2,自引:0,他引:2
实验验证了基于旋转坐标系转轴振动信号的滚动轴承局部故障诊断方法.建立起滚动轴承故障实验台, 采用压电晶体加速度传感器测取转轴的振动.通过滚动轴承内环、外环、滚动体和保持架四种典型故障的实验分析结果, 证明了该方法的可行性, 并发现转轴振动信号的传递路径相对简单, 对轴承内环、滚动体和保持架早期微小故障的发现与诊断可能是有利的. 相似文献
6.
基于机匣振动信号的滚动轴承故障协同诊断技术 总被引:1,自引:0,他引:1
针对基于机匣测点信号的航空发动机滚动轴承故障诊断问题,提出了一种滚动轴承故障的协同诊断技术。通过最小熵解卷积消除信号传递路径的影响以增强信号中的冲击性成分;通过小波变换提取共振频带;通过自相关分析抑制频带信号中的非周期性成分并进一步提升信噪比。依托带机匣的转子试验器分别对人工故障轴承和真实故障轴承进行了两组试验,试验结果表明:相比于其他典型方法,采用所提协同诊断法得到的包络谱中故障特征频率对应的谱峰更加清晰、明显。 相似文献
7.
研究了一类特殊非线性系统——混沌系统的预测问题。混沌是一种普遍存在的非线性动力学行为,混沌时间序列难以预测和控制,文章先是通过重构系统状态相空间分析混沌时间序列,然后采用多层前向神经网络对其进行预测。对典型的Lorenz和Mackey-Glass混沌序列预测结果表明,如果训练样本足够多,网络结构简单适当,训练后的网络具有很好的泛化性能,说明神经网络预测方法具有较好的工程实用价值。最后分析神经网络初始权值设置对预测性能的影响,指出改进方向。 相似文献
8.
针对滚动轴承故障诊断中可用的故障数据较少,同时基于数据驱动的故障诊断模型在训练过程中需要耗费大量的时间和计算资源的问题,提出一种基于EfficientNet模型迁移学习的滚动轴承智能故障诊断方法。首先,利用信号转化图像的方法,将不同健康类别滚动轴承振动信号生成相应的训练集和测试集;然后,将经过预训练的EfficientNet模型,通过参数共享迁移到训练集上进行训练并微调,以达到模型最佳参数;最后,通过测试集验证模型的故障诊断能力。在双转子高速滚动轴承故障数据集上,对提出的故障诊断方法进行了验证。结果表明:在不同工况下,所提出故障诊断方法的准确率最高能达到99.48%,优于传统的数据驱动故障诊断方法,具有较好的应用前景。 相似文献
9.
10.
基于信息融合的航空发动机剩余寿命预测 总被引:1,自引:3,他引:1
利用航空发动机状态监测信息,考虑到信息本身具有的误差性和随机性等特点,采用贝叶斯线性模型融合了监测信息,实现了综合利用多源信息的进行航空发动机性能衰退评估;以性能衰退评估结果为输入变量,建立基于Gamma随机过程的可靠性评估模型,预测在指定性能可靠性水平下的剩余寿命.通过算例,分析了不同监测参数对剩余寿命预测的影响.该方法能将性能监测与可靠性分析集成到一个框架中,充分利用了多种状态监测信息,结果更加准确,更符合控制航空发动机维修决策风险的实际. 相似文献
11.
基于PSO-RWE的自适应小波阈值函数滚动轴承振动信号去噪方法 总被引:1,自引:1,他引:0
针对现有小波去噪方法存在阈值函数中未知参数选取依赖经验,导致去噪不充分或去噪后信号失真的问题。提出了一种基于相对小波熵(RWE)的粒子群优化(PSO)算法,用于小波阈值函数中未知参数的自适应寻优,达到滚动轴承振动信号自适应降噪目的。改进了一种含两未知参数的小波阈值函数;以相对小波熵为优化算法的适应度函数对未知参数进行自适应寻优,得到最优小波阈值函数;通过对模拟仿真信号和试验采集的滚动轴承振动信号进行分析。结果表明:优化后的小波去噪方法能够更好地将噪声从染噪信号中滤除,去噪后信号波形的平滑度更好,信噪比相较硬阈值去噪提高294%,而且保留了原始信号更多的细节特征,具有更好的去噪性能和应用实用价值。 相似文献
12.
研究了基于机匣测点信号进行航空发动机滚动轴承故障诊断的灵敏性问题.首先利用两个带机匣的航空发动机转子试验器进行了冲击响应试验,比较了滚动轴承处冲击激励引起的轴承座测点响应和机匣测点响应的差别;然后利用这两个带机匣的转子试验器进行了滚动轴承故障模拟试验,详细对比分析了轴承座测点信号和机匣测点信号的时域波形、频谱和小波包络谱.结果表明:当滚动轴承和机匣的连接刚度较小时,故障滚动轴承的振动信号传递到机匣上时会产生很大的衰减,然而利用传统的基于小波包变换的包络解调方法仍然可以很好地诊断出外圈故障和内圈故障,对于滚动体故障的诊断效果略差.研究结果对于实际中基于机匣测点信号进行航空发动机滚动轴承故障诊断提供了试验依据. 相似文献
13.
滚动轴承摩擦力矩的乏信息模糊预报 总被引:4,自引:2,他引:2
滚动轴承摩擦力矩的波动具有不确定性,属于概率分布与趋势规律都未知的乏信息系统.这阻碍了对轴承摩擦力矩的小样本分析与总体把握.为此,以模糊集合理论为基础,从小样本入手,建立了航天轴承摩擦力矩参数的经验概率密度函数及其模糊预报模型,并对摩擦力矩的均值上界和最大值上界进行预报.对HKTA和HKTB两种轴承摩擦力矩参数的试验研究表明,在99%~100%置信水平下,预报结果与试验结果之间的误差很小,最大绝对误差仅为0.081 1个设定单位,最大相对误差仅为10.165%,可以满足航天工程的要求. 相似文献
14.
15.
针对在滚动轴承故障激励下的机匣微弱故障特征,提出了基于卷积神经网络(CNN)的故障诊断方法。利用矩阵图法、峭度图法以及小波尺度谱法3种振动信号的预处理方法,将一维原始信号转换为图像信号;利用卷积神经网络对故障进行识别。通过比较分析发现:通过连续小波尺度谱更易提取滚动轴承的故障特征,其故障识别率达到95.82%,均高于其他几种振动信号预处理方法;由于卷积神经网络可以利用深层网络结构自适应地提取滚动轴承故障特征,比传统支持向量机(SVM)方法的故障识别率高约7%。结果证明了该方法的有效性与可行性,且具有较好的泛化能力和稳健性。 相似文献
16.
基于InfoLSGAN和AC算法的滚动轴承剩余寿命预测 总被引:2,自引:0,他引:2
为解决小样本和噪声干扰下滚动轴承剩余寿命(RUL)预测准确率低的问题,提出一种基于信息最小二乘生成对抗网络(information least squares generative adversarial network,InfoLSGAN)和行动者-评论家(actor-critic,AC)算法的滚动轴承剩余寿命预测方法。将堆叠降噪自动编码器、信息生成对抗网络和最小二乘生成对抗网络相结合,构建InfoLSGAN,自动地从噪声数据中提取可解释的鲁棒特征,解决梯度消失问题;采用基于AC的训练算法训练InfoLSGAN,减少训练时间,加快收敛速度;根据训练后的InfoLSGAN,利用softmax分类器预测测试样本中滚动轴承的剩余寿命。通过滚动轴承加速疲劳寿命试验验证该方法的有效性。试验结果证明,当信噪比等于0时,该方法对滚动轴承测试样本的寿命预测准确率至少提高了10%。在小样本情况下,滚动轴承剩余寿命预测的平均准确率达9584%。 相似文献
17.
以轴承全寿命周期内的振动时间序列为研究对象,构建最大熵泊松评估模型以研究滚动轴承振动性能的演变历程。将振动时间序列分为不同的段数,基于最大熵原理和泊松过程,计算各个振动时间序列相对本征时间序列的变异概率、性能保持可靠度及其变异速度和变异加速度等指标;分析各个性能变异指标与样本量的关系,从而选取合适的样本量;用动态平均不确定度分析性能保持可靠性评估结果的不确定性。结果表明:针对案例1和案例2,将样本量分别选取为800~1000和500~900,既可以使本征序列数据样本蕴含足够的振动信息;又可以对轴承振动性能的具体变异过程进行有效地评估。 相似文献