首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The correlation between diffuse galactic gamma rays and gas tracers is studied using the final COS-B database and H i and CO surveys covering the entire galactic plane. A good quantitative fit to the gamma rays is obtained, with a small galacto-centric gradient in the gamma-ray emissivity per hydrogen atom. The average ratio of H2 column density to integrated CO temperature is determined, the best estimate being (2.3 ± 0.3) × 102 molecules cm–2 (K km s–1)–1. Strictly taken, this value is an upper limit. The corresponding mass of molecular hydrogen in the inner galaxy, derived using both 1st and 4th quadrants, is 1.0 × 109 M .The softer gamma-ray spectrum towards the inner galaxy found in previous work can be attributed to a steeper emissivity gradient at low energies and/or to a softer gamma-ray spectrum of the emission distributed like molecular gas. A steeper emissivity gradient at low energies could be related to cosmic-ray spectral variations in the Galaxy, to different distributions of cosmic-ray electrons and nuclei, or to a contribution from discrete sources. A softer spectrum for the emission associated with molecular clouds may be physically related to the clouds themselves (i.e., cosmic-ray spectral variations) or to an associated discrete source distribution.New results on the temporal and spectral characteristics of the high-energy (50 MeV to 5 GeV) gammaray emission from the Vela pulsar are presented. The whole pulsed flux is found to exhibit long-term variability. Five discrete emission regions within the pulsar lightcurve have been identified, with the spectral characteristics and long-term behaviour being different. These characteristics differ significantly from those reported earlier for the Crab pulsar. However, geometrical pulsar models have been proposed (e.g., Morini, 1983; Smith, 1986) which could explain many of these features.  相似文献   

2.
3.
4.
Cosmic-ray acceleration and transport is considered from the point of view of application to diffuse galactic -ray sources. As an introduction we review several source models, in particular supernovae exploding inside or near large interstellar clouds. The complex problem of cosmic ray transport in random electromagnetic fields is reduced to three cases which should be sufficient for practical purposes. As far as diffusive acceleration is concerned, apart from reviewing the basic physical principles, we point out the relation between shock acceleration and 2nd order Fermi acceleration, and the relative importance of the two processes around interstellar shock waves. For -ray source models the interaction of cosmic rays with dense clouds assumes great importance. Past discussions had been confined to static interactions of clouds with the ambient medium in the sense that no large scale mass motions in the ambient interstellar medium were considered. The well-known result then is that down to some tens of MeV or less, cosmic-ray nucleons should freely penetrate molecular clouds of typical masses and sizes. The self-exclusion of very low energy nucleons however may affect electron transport with consequences for the Bremsstrahlung -luminosity of such clouds.In this paper we consider also the dynamical interaction of dense clouds with a surrounding hot interstellar medium. Through cloud evaporation and accretion there exist mass flows in the cloud surroundings. We argue that in the case of (small) cloud evaporation the galactic cosmic rays will be essentially excluded from the clouds. The dynamic effects of cosmic rays on the flow should be minor in this case. For the opposite case of gas accretion onto (large) clouds, cosmic-ray effects on the flow will in general be large, limiting the cosmic-ray compression inside the cloud to dynamic pressure equilibrium. This should have a number of interesting and new consequences for -ray astronomy. A first, qualitative discussion is given in the last section.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, Greece, 19 August 1982.  相似文献   

5.
Thanks to the efforts of several research groups on high energy gamma-ray astronomy, the analysis techniques for periodicity searches in this field have improved noticeably over recent years. A brief review of the main problems involved in the analysis and of the technologies now available is given in this paper with an eye to what can be achieved by the planned gamma-ray satellite experiments.  相似文献   

6.
The observational characteristics of gamma-ray bursts are reviewed, concerning their spectra as well as their temporal structure and spatial distribution. From this data, it is suggested that the sources belong to a thick halo population (scale height > 3 kpc), and that the mean recurrence time for one source is greater than 5 yr. The implications of these results are discussed, concerning the future experimental perspectives of detection of gamma-ray bursts, and also the constraints on theoretical models.  相似文献   

7.
Various models are examined, which could give rise to point-like gamma-ray sources, at the present time indistinguishable, experimentally, from true point sources. These models involve energetic processes associated with interstellar clouds, e.g. supernova-cloud interactions, neutron star accretion inside interstellar clouds, cloud collisions, etc. The dynamical evolution of such systems is discussed and physical processes are described in a mathematical framework which can be solved. Statistical arguments are presented, where possible, on the likelihood that the scenarios may actually occur in our Galaxy. The visibility of the systems at other wavelengths, e.g. infrared, X-ray, radio etc., and further consequences, e.g. gamma-ray line emission, special radio emission line features, absorption features etc. are also discussed. Finally, a limited attempt at identification of some gamma-ray objects is made based on the theoretical predictions.Proceedings of the XVIII General Assembly of the IAU: Galactic Astrophysics and Gamma-Ray Astronomy, held at Patras, 19 August 1982.  相似文献   

8.
Conclusions My aim in this presentation has been to begin the confrontation between models for soft X-ray emission from low-luminosity galactic X-ray sources and currently available data. I have focussed principally on disk population stars, irrespective of spectral type, luminosity class, and age; and have used predictions of source temperatures and variability to distinguish between the various models. Although much remains to be done, I believe it is already possible to state that the X-ray emission characteristics of late and early spectral types, and young and old stars share many similarities, and that an economical explanation is that we are seeing the manifestations of solar coronal surface activity modulated by the stellar parameters which govern stellar magnetic activity (for example, rotation). In some cases (such as for OB stars), a proper theory accounting for the heating of such coronal plasma does not yet exist, but I am confident that the theorists will be up to this challenge.  相似文献   

9.
There are three distinct energy ranges within the broad spectrum of gamma-ray astronomy, low energy (which in turn is subdivided), high energy, and very high and ultra-high energy. Each has its own unique type of instrumentation. Only in the very high-energy range do the telescopes bear any resemblence to optical telescopes; the rest appear more like instrumentation for high-energy physics. The low- and high-energy ranges are now primarly dependent on spaceflight, although some balloon altitude research is still being accomplished. Satellites planned to be launched in the next two years will carry telescopes with considerably more capability than those previously flown in space. In the very high and ultra-high energy realm, large ground based systems are used to detect the secondary radiation from interactions of the gamma radiation with the air. In all cases, software and data analysis are becoming increasingly important aspects of the subject as the data become ever greater and more complex. Beyond the telescopes to be flown in space or installed on the ground soon, instrumentation, taking advantage of new detector techniques which have come into being or older ones which now seem capable of being adapted to space, are being developed for the more distant future.  相似文献   

10.
11.
Solar modulation of galactic cosmic radiation   总被引:1,自引:0,他引:1  
In this review an attempt is made to present an integrated view of the solar modulation process that cause time variation of cosmic ray particles. After briefly surveying the relevant large and small scale properties of the interplanetary magnetic fields and plasma, the motion of cosmic ray particles in the disordered interplanetary magnetic fields is discussed. The experimentally observed long term variations of different species of cosmic ray particles are summarised and compared with the theoretical predictions from the diffusion-convection model. The effect of the energy losses due to decelaration in the expanding solar wind are clearly brought out. The radial density gradient, the modulation parameter and their long term variation are discussed to understand the dynamics of the modulating region. The cosmic ray anisotropy measurements at different energies are summarised. At high energies (E 1 GeV), the average diurnal anisotropy is shown to be energy independent and along the 18.00 h direction consistent with their undergoing partial corotation with the sun. The average semi-diurnal anisotropy seems to vary with energy as E +1 and incident from a direction perpendicular to the interplanetary field line, consistent with the semi-diurnal component being produced by latitudinal gradients. Both the diurnal and semi-diurnal components are shown to be practically time invariant. On a day to day basis, however, the anisotropy characteristics such as the exponent of variation, the amplitude and the phase show very high variability which are interpreted in terms of convection and variable field aligned diffusion due to the redistribution of the galactic cosmic ray density following transient changes in the interplanetary medium. The anisotropy observation at low energies (E 100 MeV) are, however, not explained by the theory.The rigidity dependence and the anisotropies during short term variations such as Forbush decreases are discussed in terms of the proposed field models for the interplanetary field structure and are compared with the observed rigidity dependence of long term variations. The data pertaining to the 27 day corotating Forbush decreases and their association with enhanced diurnal variation are also presented. The relationship between the energetic storm particle events which are caused by the acceleration of particles in the shock fronts and the Forbush decreases which are caused by the exclusion of galactic particles by the enhanced field structure in the same fronts are clearly brought out. Thus the recurrent increases at low energies and recurrent decreases at high energies may both be caused by the field structure in the shock front. In conclusion, the properties of the very short period fluctuations (18–25 cph) are summarised.  相似文献   

12.
《Space Science Reviews》1989,49(1-2):111-124
The telescope Gamma-1 is designed to investigate cosmic gamma rays in the energy range from 50 MeV to 5000 MeV. The geometrical sensitive area of the telescope amounts to 1500 cm2, the angular resolution in each direction is equal to 1.2° at the energy 300 MeV and is about 20 when including a coded mask in the telescope, the energy resolution changes from 70% at 100 MeV to 35% at 550 MeV. The characteristics of the telescope and its systems have been determined by the Monte-Carlo method as well as by accelerator calibrations. Discrete sources at the intensity level of 10–7 quanta cm–2 s–1 may be recorded in a year of observations with the gamma-ray telescope Gamma-1 with a source location accuracy of 10 arc min.  相似文献   

13.
Cosmic gamma-ray ray sources may be sought if high-energy gamma-rays may be detected without confusion from the very intense isotropic background of hadronic cosmic rays. Ground-based methods are needed at energies above tens of GeV, using air showers, and at energies below tens of TeV, the detection of muons in showers is not the most efficient way to reject hadronic showers. The shape and orientation of erenkov images can reject far more than 99% of the background. The way in which erenkov radiation is distributed in showers is discussed, and the possibilities of using image shape, distribution of light on the ground, time profile, spectrum and polarization of the light are briefly discussed. Imaging alone appears to be the most powerful. Simulations suggest that the uv content of the light should not be a useful diagnostic.  相似文献   

14.
15.
Some astrophysical mechanisms responsible for gamma-ray bursts on or near neutron stars are briefly reviewed.  相似文献   

16.
A model for the emission processes causing rapid variability (less than one day) in active galactic nuclei is developed. Relativistic electron beams escape from reconnection sheets in coronae of accretion disks and excite plasma turbulence with a typical frequency , which depends on the electron number densityn (see also the contribution by R. van Oss). The finite lengths of different beams emerging from different reconnection sheets allows that the waves arecoherently scattered to frequencies 2pe. For Lorentz factors 103 and densities typical for disk coronaen106 cm –3 (derived from iron line observations) one easily reaches the optical, frequency range. The time scale of the variability is then caused by the relaxation of the electron beams. Likewise, this model explains the very rapid variability in the X-ray (less than 10 minutes) by changing the parameters slightly. According to this scenario the higher the variable frequency is, the closer to the central black hole it should originate.  相似文献   

17.
A reference catalogue and atlas of galactic novae   总被引:1,自引:0,他引:1  
This catalogue and atlas contains information on 277 objects, mainly classical novae and related objects (recurrent novae, X-ray novae, dwarf novae with long cycle lengths, symbiotic stars and suspected new stars). For most objects, brightness ranges, accurate positions, finding charts and selected bibliographies are given.Based in part on observations collected at the European Southern Observatory, La Silla, Chile, the Centro Astronomico Hispano-Aleman Calar Alto, operated by the Max-Planck-Institut für Astronomie, Heidelberg, and on measurements made at the European Southern Observatory, Garching, F.R.G.  相似文献   

18.
The latest achievements in very high-energy (VHE) gamma-ray astronomy are discussed. Types of candidate objects for the sources of very high-energy gamma-quanta are considered, and pulsars, as the most probable ones, are anticipated. The objectives of VHE gamma-ray astronomy are presented, outlining the pressing need for complex observations of individual objects.  相似文献   

19.
20.
A new X-ray image of the galactic plane has been produced using the 45 arcmin square field of view of the Medium Energy Instrument on EXOSAT. This image shows a total of 64 sources including 18 new ones which include the first observation of persistent emission from the globular cluster bursters Terzan 1 and Terzan 5. The most important discovery from this image is a 2° wide ridge of diffuse emission symmetrical about the plane and extending from the galactic centre to 1=±40°. The spectrum of this emission appears to be hard ( 1.2) with no significant absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号