首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Sanjay Jayaram   《Acta Astronautica》2009,65(11-12):1804-1812
The Space Systems Research Laboratory (SSRL) at Saint Louis University is developing SLUCUBE nanosatellite as part of the space mission design program. The objective of the mission is to demonstrate space capability of high performance nanosatellite components that has been developed at SSRL for the past three years. The objective of the program is to provide extremely low-cost and rapid access to space for scientists and commercial exploitation using commercial-off-the-shelf components. SLUCUBE is a double CubeSat with dimensions 10×10×20 cm and a mass of 2 kg. This nanosatellite features suite of technology demonstration components to enlarge the capability of space mission for such class of spacecrafts. The primary mission of SLUCUBE is to test and demonstrate several enabling technologies by flying a number of university developed high performance components. This paper describes the new developed technologies by providing details of specific components developed along with the R&D efforts and laboratory facilities. A brief discussion about the student involvement and educational benefits will also be presented.  相似文献   

2.
The suborbital flight is a kind of flight, which reaches the space and then comes back to ground without completing one orbital revolution. The atmospheric thermosphere extends from 85 km to 600 km in altitude. Therefore, the suborbital and low-thermospheric experiments to be performed at altitude below 300 km can be combined using the sounding rocket. These experiments include rocket staging, fairing separation, ultrasonic flight, reentry, aerobrake and recovery test, ultraviolet and ionization observations, ozone measurement, etc. The advent of Taiwan's sub-orbital and thermospheric experiments project can be traced back to 1997. This is the year Taiwan's National Space Organization (NSPO) was assigned to be responsible for procuring the sounding rocket for applications in science experiments and space technology research effort. From 1997 to 2010, 8 launches have been completed including one experimental hybrid rocket. All onboard instruments and sensors for sub-orbital and low-thermospheric experiments are developed and integrated by the domestic universities. More launches have been planned in the future. Opportunities for international cooperation in developing new instruments and payloads for future experiments will be possible.  相似文献   

3.
针对空间不连续工作的典型星载光学遥感器的结构和光学系统,进行抗辐射薄弱环节与总剂量效应的仿真分析计算,提出在遥感器入光口遮光罩处增加防护盖以降低光学系统中辐射吸收剂量预示最大位置处的吸收剂量,并对防护盖的具体参数进行仿真优化设计。研究表明:光学系统各光学部件所在位置辐射吸收剂量处于不均匀状态,接收地物信息的第一镜体处的预示值最大;安装防护盖后,可大幅降低该处的辐射吸收剂量,使之与其他部位的吸收剂量处于同一量级水平;防护盖的实施参数以厚度1~3 mm、距离入光口遮光罩端部小于20 mm为最佳。文章最后描述了防护盖设计方法的通用性,给出了防护盖的适用技术条件。  相似文献   

4.
The PRISMA project for autonomous formation flying and rendezvous has passed its critical design review in February–March 2007. The project comprises two satellites which are an in-orbit testbed for Guidance, Navigation and Control (GNC) algorithms and sensors for advanced formation flying and rendezvous. Several experiments involving GNC algorithms, sensors and thrusters will be performed during a 10 month mission with launch planned for the second half of 2009.The project is run by the Swedish Space Corporation (SSC) in close cooperation with the German Aerospace Center (DLR), the French Space Agency (CNES) and the Technical University of Denmark (DTU). Additionally, the project also will demonstrate flight worthiness of two novel motor technologies: one that uses environmentally clean and non-hazardous propellant, and one that consists of a microthruster system based on MEMS technology.The project will demonstrate autonomous formation flying and rendezvous based on several sensors—GPS, RF-based and vision based—with different objectives and in different combinations. The GPS-based onboard navigation system, contributed by DLR, offers relative orbit information in real-time in decimetre range. The RF-based navigation instrument intended for DARWIN, under CNES development, will be tested for the first time on PRISMA, both for instrument performance, but also in closed loop as main sensor for formation flying. Several rendezvous and proximity manoeuvre experiments will be demonstrated using only vision based sensor information coming from the modified star camera provided by DTU. Semi-autonomous operations ranging from 200 km to 1 m separation between the satellites will be demonstrated.With the project now in the verification phase particular attention is given to the specific formation flying and rendezvous functionality on instrument, GNC-software and system level.  相似文献   

5.
Understanding of the space debris environment and accuracy of its observation-validated models are essential for optimal design and safe operation of satellite systems. Existing ground-based optical telescopes and radars are not capable of observing debris smaller than several millimeters in size. A new experimental and instrumental approach – the space-based Local Orbital Debris Environment (LODE) detector – aims at in situ measuring of debris with sizes from 0.2–10 mm near the satellite orbit. The LODE concept relies on a passive optical photon-counting time-tagging imaging system detecting solar photons (in the visible spectral range) reflected by debris crossing the sensor field of view. In contrast, prior feasibility studies of space-based optical sensors considered frame detectors in the focal plane. The article describes the new experimental concept, discusses top-level system parameters and design tradeoffs, outlines an approach to identifying and extracting rare debris detection events from the background, and presents an example of performance characteristics of a LODE sensor with a 6-cm diameter aperture. The article concludes with a discussion of possible sensor applications on satellites.  相似文献   

6.
We propose in this paper a method to analyse the efficiency of the direction pointed by an infrared sensor dedicated to forest fire detection on board of a space vehicle. The objective is to use these sensors to detect forest fires on a defined territory with a specified probability. One way to verify that the system stands this specification is to test each possible configuration (pointing direction of the sensor and number of space vehicles) and estimate the corresponding probability of forest fire detection. However, when the coverage territory is wide or when the number of vehicles is important, it is hardly possible to simulate every configuration in a reasonable amount of time. We propose to use kriging method for the prediction of forest fire detection probability for all possible configurations.  相似文献   

7.
黄洁  文雪忠  罗锦阳  罗庆  龙耀  任磊生  柳森 《宇航学报》2012,33(9):1341-1346
从理论和实验两个方面开展了基于PVDF(Polyvinylidene Fluoride)压电薄膜敏感器的空间碎片撞击航天器感知定位技术研究,分析了基于双曲线理论的定位方法,并在理论分析的基础上,利用气枪和超高速弹道靶分别开展了平面铝板、曲面铝板等单层结构和Whipple结构下的验证实验。弹丸速度范围100m/s-3km/s,实验靶材为2mm厚的单层铝板和铝板厚为1mm、前后间距为10cm的Whipple结构,靶材上安装了4个PVDF传感器。研究结果表明:基于PVDF传感器的感知定位技术可实现空间碎片撞击航天器的位置定位,是一种可应用于航天器在轨感知空间碎片撞击系统的可选技术。  相似文献   

8.
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning.Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime.The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.  相似文献   

9.
Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the “ISS” have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device “Pneumocard” was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex “Pneumocard” was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates.HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight.Our results demonstrate that autonomic function testing aboard the ISS using “Pneumocard” is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut.Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling.  相似文献   

10.
G. Russo   《Acta Astronautica》2009,65(9-10):1196-1207
The first dropped transonic flight test (DTFT) of the USV Program, performed with Castor, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia.At 8:30 a.m. the 340 000 m3 stratospheric balloon lifted off from the East coast of Sardinia, bringing the flying test bed (FTB) up to 20.2 km before release within the isolated sea polygon controlled by Italian air force test range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle.The flight itself was very good, with a nose-up manoeuvre under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash-down.Many national and international institutions and industries contributed to the mission carrying out, under the supervision and technical guide of CIRA: Italian Space Agency, Italian Air Force, Italian Navy, Italian Civil Aviation Authority, Italian Company for Air Navigation Services, Port Authorities, European Space Agency, Techno System Dev., Vitrociset, Carlo Gavazzi Space, Space Software Italia, Alcatel Alenia Space Italy, ISL-Altran Group.The paper reports the actual status of post-flight data analysis.  相似文献   

11.
A mathematical model of the operation of the sensor of convection under ground and space conditions is described, and the results of modeling are compared to experimental data. A good agreement of the model and experiment is obtained for ground conditions. The sensor operation under conditions of a space flight is simulated using actual microaccelerations that took place onboard the Mirstation. Good sensitivity of the sensor to the measured components of acceleration is demonstrated. The results of simulation are compared to the results of space experiments carried out with the DACON instrument onboard the Mirstation.  相似文献   

12.
IntroductionLocomotor and some resistance exercises in space require a gravity replacement force in order to allow 1g-like ground reaction forces to be generated. Currently bungee cords, or other loading devices, interface with the crew member through a harness with a waist belt and shoulder straps. Crew members often find the application of the required loads to be uncomfortable, particularly at the hips.MethodsAn experimental harness was built that differed from previous in-flight designs by having a wider, moldable waist belt and contoured shoulder straps with additional padding. Eight subjects ran at 100% body weight (BW) loading for a total duration of 30 min per day on 12 days over a 3-week period in simulated 0-g conditions using horizontal suspension. A 100 mm Visual Analog Scale (VAS)1 was used to assess harness-related and lower extremity discomfort at the end of each run.ResultsThe overall rating of harness discomfort decreased from 27 mm on the 100 mm scale on day 1 to 10 mm on day 12, with significant decreases recorded for the back and hip regions as well as the overall harness.DiscussionThe experimental harness allows for repeated exposure to 30-minute bouts of 100% BW loaded simulated 0-g running with levels of discomfort less than 30 mm on a VAS scale of 0–100 mm. We believe that the use of such a harness during on-orbit exercise countermeasures may allow exercise to be performed at levels which are more effective in preventing bone and muscle loss.  相似文献   

13.
The activity of the sympathetic adrenal system in cosmonauts exposed to a stay in space lasting for about half a year has so far been studied only by measuring catecholamine levels in plasma and urine samples taken before space flight and after landing. The device "Plasma 01", specially designed for collecting and processing venous blood from subjects during space flight on board the station Salyut-7 rendered it possible for the first time to collect and freeze samples of blood from cosmonauts in the course of a long-term 237-day space flight. A physician-cosmonaut collected samples of blood and urine from two cosmonauts over the period of days 217-219 of their stay in space. The samples were transported to Earth frozen. As indicators of the sympathetic adrenal system activity, plasma and urine concentrations of epinephrine and norepinephrine as well as urine levels of the catecholamine metabolites metanephrine, normetanephrine, and vanillylmandelic acid were determined before, during and after space flight. On days 217-219 of space flight plasma epinephrine and norepinephrine levels were slightly increased, yet not substantially different from normal. During stress situations plasma norepinephrine and epinephrine levels usually exhibit a manifold increase. On days 217-219 of space flight norepinephrine and epinephrine levels in urine were comparable with pre-flight values and the levels of their metabolites were even significantly decreased. All the parameters studied, particularly plasma norepinephrine as well as urine norepinephrine, normetanephrine, and vanillylmandelic acid, reached the highest values 8 days after landing. The results obtained suggest that, in the period of days 217-219 of the cosmonauts stay in space in the state of weightlessness, the sympathetic adrenal system is either not activated at all or there is but a slight activation induced by specific activities of the cosmonauts, whereas in the process of re-adaptation after space flight on Earth this system is considerably more markedly activated.  相似文献   

14.
《Acta Astronautica》2007,60(4-7):254-258
Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123–127 [5]]. Changes in T- and B-mediated activities of the immune system were demonstrated during and after space flight. However, the influence of the space flight conditions on the allergic status of cosmonauts and astronauts is still unclear. The goal of this investigation was to analyze total blood IgE levels, specific IgE-antibodies and interleukin-4 in blood of Russian crew members before and after space flights to the International Space Station (ISS) and during a long-term isolation study. For this purpose, we used the ELISA assays as well as other special kits. It was noticed that four out of nine cosmonauts had high total serum IgE (more than normal clinical values of 120 IU/ml). At the same time, there were no statistically significant changes in serum IgE levels before and after long-term space flights (128–195 days). A similar situation was observed regarding preflight IgE levels of cosmonauts who performed short-term flights (7–11 days). However, seven out of 11 cosmonauts had increased IgE level in blood post short flights as compared with pre-flight values. We also measured specific IgE-antibodies, because their high concentration may cause the increased production of total IgE indicating sensitization of cosmonauts. This becomes more important when humans spend a longer time in the closed environment of a space vehicle. Also our ground-based investigations showed that a stay in such conditions does not enhance sensitization to allergens (total number of tested allergens 27) including food, inhalants and cross-reactive proteins. Serum interleukin-4 level measured after short- and long-term space flights was identical. A linear correlation between levels of immunoglobulin E and interleukin-4 also was not significant. Despite the fact that our investigations did not establish any influence of space flight on sensitization and development of immediate-type allergic reactions, they demonstrated the necessity to control the allergic status of cosmonauts very carefully both before and after space flights. At the same time, it is necessary to pay special attention to outcomes of atopic individuals with high pre-flight level of total blood IgE.  相似文献   

15.
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.  相似文献   

16.
Long-term sensitivity of human cells to reduced gravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. However, little information is available on primary and rapid gravi-responsive elements in mammalian cells. In search of rapid-responsive molecular alterations in mammalian cells, short-term microgravity provided by parabolic flight maneuvers is an ideal way to elucidate such initial and primary effects. Modern biomedical research at the cellular and molecular level requires frequent repetition of experiments that are usually performed in sequences of experiments and analyses. Therefore, a research platform on Earth providing frequent, easy and repeated access to real microgravity for cell culture experiments is strongly desired. For this reason, we developed a research platform onboard the military fighter jet aircraft Northrop F-5E “Tiger II”. The experimental system consists of a programmable and automatically operated system composed of six individual experiment modules, placed in the front compartment, which work completely independent of the aircraft systems. Signal transduction pathways in cultured human cells can be investigated after the addition of an activator solution at the onset of microgravity and a fixative or lysis buffer after termination of microgravity. Before the beginning of a regular military training flight, a parabolic maneuver was executed. After a 1 g control phase, the parabolic maneuver starts at 13,000 ft and at Mach 0.99 airspeed, where a 22 s climb with an acceleration of 2.5g is initiated, following a free-fall ballistic Keplerian trajectory lasting 45 s with an apogee of 27,000 ft at Mach 0.4 airspeed. Temperature, pressure and acceleration are monitored constantly during the entire flight. Cells and activator solutions are kept at 37 °C during the entire experiment until the fixative has been added. The parabolic flight profile provides up to 45 s of microgravity at a quality of 0.05g in all axes. Access time is 30 min before take-off; retrieval time is 30 min after landing. We conclude that using military fighter jets for microgravity research is a valuable tool for frequent and repeated cell culture experiments and therefore for state-of-the art method of biomedical research.  相似文献   

17.
The problem of the interpretation of measurements made by means of a convection sensor is considered. The sensor is a cubic chamber filled by a viscous fluid (gas). Fixed and unequal temperatures are maintained on two opposite sides of the cube; the other sides are perfect heat conductors. Two differential thermocouples are placed inside the chamber to measure the temperature difference at two pairs of fixed points. The sensor is mounted aboard the Earth's satellite. Mathematical models of various degrees of complexity are proposed which describe processes of heat and mass transfer under the action of a quasistatic component of microaccelerations. The results of mathematical simulation of the data of sensor thermocouples presenting a response to the real quasistatic component of microaccelerations which took place aboard the Mirstation are given. It is shown that under usual conditions of an orbital mission the sensor presents a linear low-frequency filter. By combining the data of several identical sensors, tightly arranged and oriented in a certain way, it is possible to measure low-frequency components of the angular acceleration of the satellite and linear microaccelerations at the point of the sensor position.  相似文献   

18.
空间原子氧环境是低地球轨道空间环境的重要组成之一,未来的原子氧探测技术要求探测载荷不仅在重量和功耗方面比现有技术大幅降低,而且在探测性能上要有极大的提升,特别是能实现原子氧通量的实时探测。文章在分析目前主要原子氧探测类型及其特点的基础上,提出一种基于碳纳米管气体传感器的原子氧探测技术。其探测仪器具有体积小、功耗低、灵敏度高、可实时探测、能长期连续工作、可重复使用等特点,是纳米传感器技术发展的重要方向。该技术一旦成功应用,有望快速提高我国在原子氧探测方面的技术水平。  相似文献   

19.
Beyond the Earth's atmosphere, galactic cosmic radiation (GCR) and solar energetic particles (SEPs) are a significant hazard to both manned and robotic missions. For long human missions on the lunar surface (months to a year) a radiation shelter is needed for dose mitigation and emergency protection in case of solar events. This paper investigates the interaction of source protons of solar events like those of February 1956 that emitted many fewer particles with energies up to 1000 MeV and of the October 1989 event of lower protons energy but higher fluence, with the lunar regolith and aluminum shielding of a lunar shelter. The shelter is 5 m in diameter and has a footprint of 5×8 m and a 10 cm thick aluminum support structure, however, actual thickness could be much smaller (~1–2 cm) depending on the weight of the regolith shielding piled on top. The regolith is shown to be slightly more effective than aluminum. Thus, the current results are still applicable for a thinner aluminum structure and increased equivalent (or same mass) thickness of the regolith. The shielding thicknesses to reduce the dose solely due to solar protons in the lunar shelter below those recommended by NASA to astronauts for 30 day-operation in space (250 mSv) and for radiation workers (50 mSv) are determined and compared. The relative attenuation of incident solar protons with regolith shielding and the dose estimates inside the shelter are calculated for center seeking, planar, and isotropic incidence of the source protons. With the center seeking incidence, the dose estimates are the highest, followed by those with isotropic incidence, and the lowest are those with the planar incidence.  相似文献   

20.
This is the status report of the development study on ATREX engine (Air Turbo Ramjet) that is now under way in the Institute of Space and Astronautical Science (ISAS) cooperation with the Ishikawajima Harima Heavy Industries (IHI), the Kawasaki Heavy Industries (KHI), the Mitsubishi Heavy Industries (MHI). ATREX engine will be applied for the propulsion system of fly-back booster of TSTO space plane. ATREX is the combined cycle (a fan-boosted ramjet) engine providing the effective thrust from sea level static to flight Mach number 6. ATREX is worked on the expander cycle with precooling the incoming air as shown in Fig. 1. ATREX employs the tip turbine configuration which allows the compactness and the light weight of turbo machinery and the variable geometry airintake and plugnozzle which allow the wide range operation conditions.From 1990 to 1992, “ ATREX-500“ has been tested at the sea level static conditions. ATREX-500 is the 1/4-scale model of which fan inlet diameter is 300 mm and overall length 2,200 mm. From 1992 have been performed the wind tunnel tests on the primary components of ATREX, the axisymmetric variable geometry airintakes, the precoolers and the variable geometry plug nozzles. In parallel to the windtunnel tests, the ram combusters have been tested simulating the hypersonic flight conditions and the application studies on advanced carbon-carbon composite for the tip-turbine and fan assembly has been proceeded.In 1994 initiated the flight test plan in which ATREX will be verified in the practical flight conditions by using an unmanned flying test bench.In 1995 will be tested ATREX-500 installing the precooler under the sea level static conditions to examine the engine performance and the icing on the precooler.The present paper addresses the high loading ram combuster experiment using the mixer with skewed lobes to generate swirl flow and the analytical studies and the designs on the precooler and the precooled ATREX engine and the flight test plan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号