首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In [1], we proposed using "data adaptive" spectrum estimation techniques (e.g., maximum likelihood and maximum entropy) for radar problems such as separating low angle returns from ground reflections. W. White suggests [2] that these techniques will be of little value due to the correlation between the various received signals. In this rebuttal, we present additional conceptual arguments, simulation results and field data which support the utility of the techniques set forth in [1].  相似文献   

2.
The problem of multisensor detection and high resolution signal state estimation using joint maximum a posteriori detection and high order nonlinear filtering techniques is addressed. The model-based fusion approach offers the potential for increased target resolution in range/Doppler/azimuth space. The approach employs joint detection/estimation filters (JDEF) for target detection and localization. The JDEF approach segments the aggregate nonlinear model over the entire target resolution space into a number of localized nonlinear models by partitioning the resolution space into a number of resolution subcells. This partitioning leads to extremely accurate state estimation. The proposed JDEF approach has a built-in capability for automatic data alignment from multiple sensors, and can be used for centralized, decentralized, and distributed data fusion.  相似文献   

3.
Radar target classification of commercial aircraft   总被引:1,自引:0,他引:1  
With the increased availability of coherent wideband radars there has been a renewed interest in radar target recognition. A large bandwidth gives high resolution in range which means target discrimination may be possible. Coherence makes cross-range resolution and radar images possible. Some of the problems of classifying high resolution range profiles (HRRPs) are examined and simple preprocessing techniques which may aid subsequent target classification are investigated. These techniques are applied to HRRP data acquired at a local airport using the Microwave Radar Division (MRD) mobile radar facility It is found that Boeing 727 and Boeing 737 aircraft can be reliably distinguished over a range of aspect angles. This augers well for future target classification studies using HRRPs  相似文献   

4.
The capabilities of a gas scintillator camera for use in X-ray astronomy are investigated. Detailed experimental results are presented on both the position and energy resolution over the energy range 0.28 to 6 keV. The energy resolution varies from 38% to 9.5% for 0.28 keV C-K and 6 keV X-rays respectively. Position resolutions of 1.8 mm and 3.5 mm for 6 keV and 1.5 keV Al-K X-rays were obtained. Image quality and uniformity over the camera aperture are also discussed, whilst further techniques leading to improvements in position resolution are outlined. Finally applications of these cameras in conjunction with grazing incidence and coded mask X-ray optics are discussed.  相似文献   

5.
In a dense detection environment track-while-scan algorithms will introduce many false tracks when processing is performed on a scan-by-scan basis. The maximum likelihood solution involving all detections on all scans is formulated and evaluated for the initiation problem consisting of false alarms, missed detections, and unresolved detections. A comparison is made between the maximum likelihood solutions including and not including the resolution likelihood and it is shown that the resolution likelihood must be included if the data contain unresolved detections. While the maximum likelihood method (with unresolved detections) does not appear to be implementable in real time without very high speed integrated circuit (VHSIC) technology, it can be used as a standard to which more implementable methods can be compared.  相似文献   

6.
A number of modern spectral estimators are shown to have a common generic formulation. These include minimum variance, MUSIC, and maximum entropy. A new maximum entropy spectral estimator is derived using constraints on the modal powers or the expected-square projections of the data onto the eigenvectors of the data covariance matrix. The formulation incorporates uncertainty in the modal power constraints and the signal-versus-noise subspace separation. The resulting estimators have forms which incorporate all other modern estimators, including maximum entropy and minimum norm. The new estimators allow further development when a priori information is used in the constraints. Comparison of one version of the estimator with the minimum norm verifies the greater probability of resolution of the minimum norm but indicates in some instances the value of the incorporated uncertainties. Another version uses complex constraints and reduces to conventional maximum entropy or minimum norm under certain conditions  相似文献   

7.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

8.
本文在评述国外同类技术的基础上,介绍近年研制成的,以研究转子内流动为主要对象的低速大尺寸轴流压气机实验装置和动态测量技术,包括实验台、旋转四坐标全电动探针位移机构、并行多通道高速数据采集器、高频压力探针及一整套高频压力探针、热丝和激光多普勒动态测量技术,列举了典型的转子内和转子进、出口复杂流场测量结果。   相似文献   

9.
In surveillance problems dense clutter/dense target situations call for refined data association and tracking techniques. In addition, closely spaced targets may exist which are not resolved. This phenomenon has to be considered explicitly in the tracking algorithm. We concentrate on two targets which temporarily move in close formation and derive a generalization of MHT methods on the basis of a simple resolution model.  相似文献   

10.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   

11.
A method is discussed for detecting the presence of multiple targets in the radar antenna beam. It is assumed that the targets are unresolvable in range, Doppler, and angle using conventional monopulse resolution techniques. The basic approach taken is a generalization of the "quadrature" method, with significantly enhanced performance in the case when multiple pulses are integrated into a single solution. Detection and false alarm probabilities are derived analytically and the receiver operating characteristics are graphed. This study was performed for application to angle processing in a frequency agile automatic tracking radar, but the underlying concept is general and has applications outside this area.  相似文献   

12.
Several approaches are evaluated for reducing the large data handling and processing loads associated with synthetic aperture radar (SAR) imaging systems. The effects of data abbreviation on SAR images were studied theoretically as well as experimentally with SEASAT-A data. Image degradation was measured in terms of azimuth resolution and signal-to-clutter ratio. It was found that the degradation of image quality to data rate reduction is graceful. With high time-bandwidth product signals, little or no azimuth resolution degradation was noticed with several data bandwidth reduction techniques that achieve data reduction factors of up to 8. The signal-to-clutter ratio was found to decrease slowly with increasing reduction in data rate.  相似文献   

13.
Range-Doppler Imaging with Motion through Resolution Cells   总被引:1,自引:0,他引:1  
Doppler processing in pulsed radar is analyzed for time intervals which involve motion through range resolution cells, the emphasis being on the range-Doppler imaging of a rigid rotating body. The objective of the theory is to derive a method for compensating for motion through range and cross-range resolution cells. The compensation ion procedure described is compatible with optical data processing. With such a two-dimensional processor, the method permits simultaneous eous compensation for all points in the target field. The s consists of taking the Fourier transform in the range dimension, followed by a gentle distortion of this range-transform plane, and that followed by a two-dimensional Fourier transform. Two implementations with experimental results are briefly mentioned. One implementation is all optical and utilizes a holographic hyperbolic lens and/or holographic conical lens. The other implementation, involves applying the appropriate te distortion electronically as th " range sweeps" from the pulse train are received and put on film.  相似文献   

14.
Using the Hubble Space Telescope (HST) and the Faint Object Spectrograph (FOS) high signal to noise spectrograms were obtained for 15 OB stars in the Magellanic Clouds***, three of which are of spectral type O3. The data cover the spectral region from 1150 A – 2300 A with a resolution of /1 A. One O8.5 supergiant, OB78#231, in M31is also included in this work. These data are a substantial improvement on previous high resolution IUE observations in the Magellanic Clouds (Walborn et al. 1985 and references therein) because of the smaller aperture and the much better signal to noise ratio, while no high resolution UV spectra of O stars in M31 have been obtained before. In this paper we discuss various morphological aspects of the spectra, concerning metallicity and the stellar winds, compared to galactic analogues.  相似文献   

15.
Various techniques for using simultaneous Global Positioning System (GPS)/Loran data to estimate the propagation uncertainties that limit the absolute accuracy of Loran-C are discussed. Significant improvements in the absolute accuracy of Loran can be achieved with very simple calibrations. The absolute accuracy of Loran in the Gulf of Maine without calibration is presented. The maximum and RMS absolute errors are between 700 and 500 m, depending on the choice of land model. Simple calibrations greatly improve the absolute accuracy of Loran. As shown, if the land conductivities are fixed a priori and a single parameter is optimized, the maximum and RMS absolute errors fall to around 250 and 60 m, respectively. Alternatively, land can be treated as a single conductivity which can be adjusted to reduce offshore additional secondary phase factor errors. The performance of this practice is summarized in tables which show maximum and RMS errors of around 300 to 100 m, respectively  相似文献   

16.
The instrument configuration and performance characteristics of the X-ray imaging telescopes on EXOSAT are described. The instrument comprises two fully independent Wolter I imaging telescopes. Each telescope can be used in either of two principal modes: (i) an imaging mode with either a position sensitive proportional counter or a channel multiplier array plate in the focal plane, (ii) a spectrometer mode which features a 500 lines/mm and/or a 1000 lines/mm transmission grating as dispersive element.Preliminary results from the calibration of the fully integrated experiment indicate an ultimate angular resolution of 8.5 arc sec full width at half maximum or 17.5 arc sec half-power beam width. The ultimate wavelength resolution in the spectrometer mode ranges from 1Å for wavelengths below 50Å, to 5Å at wavelengths near 300Å.A method for estimating the telescope performance is given which reasonably accounts for the influence of the X-ray source spectrum and the degree of interstellar absorption on the counting statistics.A comparison between EXOSAT and the EINSTEIN telescope in terms of band width/resolution and minimum source detectability shows an enhanced potential for EXOSAT relative to EINSTEIN for sources with T 107K and low column densities (< 4 × 1020cm–2) and a reduced potential for sources with hard, or heavily cut-off, spectra.  相似文献   

17.
Three 2.104 s observations were carried out with EXOSAT on three fields following the shock from the north to the east of the Cygnus Loop supernova remnant. Due to the softness of the source, most of the photons were collected with the LE package (CMA). For each exposure we used at least three filters (4000 Å lexan, Al-Par, boron) in order to extract the maximum spectral information from the data. The few photons gathered with the boron filter are particularly important in that respect. The total count number collected with the other filters allows a statistically significant overall mapping of the fields with 1*1 pixels, but a better resolution can be achieved on the brightest areas of the Loop. Interesting details are revealed, such as bright small spots. Irregularities are also evident both in the shock front and inside the remnant, specially in the northern and eastern fields.  相似文献   

18.
Layover solution in multibaseline SAR interferometry   总被引:1,自引:0,他引:1  
In this work, spectral estimation techniques are used to exploit baseline diversity of a multichannel interferometric synthetic aperture radar (SAR) system and overcome the layover problem. This problem arises when different height contributions collapse in the same range-azimuth resolution cell, due to the presence of strong terrain slopes or discontinuities in the sensed scene. We propose a multilook approach to counteract the presence of multiplicative noise, which is due to the extended nature of natural targets; to this purpose we extend the RELAX algorithm to the multilook data scenario (M-RELAX). A thorough performance analysis of nonparametric (beamforming and Capon) and parametric (root MUSIC and M-RELAX) techniques is carried out based on Monte Carlo simulations and Cramer-Rao lower bounds (CRLB) calculation. The results suggest the superiority of parametric methods over nonparametric ones.  相似文献   

19.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

20.
Physical modeling of the Doppler centroid (DC) can be used to predict synthetic aperture radar (SAR) Doppler ambiguity when antenna attitude is controlled or measured precisely enough. It is shown that the same model proves useful even in the cases of higher attitude uncertainty, if it is combined with suitable adaptive techniques. In this paper, Doppler ambiguity resolution is formulated as a hypothesis testing problem over a domain of integer values that are directly related to the attitude uncertainty. A test statistic is derived from the entire SAR scene using data adaptive processing. A broad class of such adaptive algorithms is analyzed in a unified way, starting from the range-azimuth coupling in the frequency domain and multilook techniques. The analysis includes two well-known and two new multilook methods for Doppler ambiguity resolution. A suitable test statistic is proposed for each of these methods and its dependency on the scene spatial correlation is discussed. Experimental results confirm the robustness of the combined scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号