首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

2.
We investigate magnetic reconnection in a multiple current sheet configuration by means of three-dimensional resistive MHD simulations. This configuration might be of interest in the solar corona context, e.g. for coronal helmet streamers. We present results of our simulations of the linear and nonlinear development of the tearing mode instability. In particular, we highlight the changes in magnetic topology and the resulting plasma dynamics. Our results indicate that reconnection in complex coronal neighboring magnetic flux systems efficiently converts magnetic field energy into thermal energy and leads to small-scale tongue outflows rather than large-scale coronal mass ejections.  相似文献   

3.
在双极背景场下,光球层反向磁通量的喷发将会在新老磁场之间形成中性电流片.本文从理想磁流体方程组出发,考虑磁场和日冕等离子体的相互作用,对上述电流片的形成过程进行了数值研究.结果表明,对亚音速喷发,将由里向外形成四个区域:(1)由喷发物质直接形成的低温,高密度日珥,位于最里层;(2)紧挨抛射日珥的低温稀疏区;(3)喷发物质和日冕物质向中性电流片集中形成的高温.高密度物质环;(4)在环的周围,由快磁声波形成的,密度略比日冕背景为高的前鞘区.上述结构与典型的环形日冕瞬变的观测特征相符.由此表明双极背景场下反向磁通量的喷发可能是触发这类瞬变的重要机制.   相似文献   

4.
采用球坐标下二维三分量理想MHD模型,研究部分开放多极背景磁场中日冕磁绳的灾变现象.背景磁场由含3个闭合双极场的冕流和带赤道中性电流片的开放场构成,磁绳位于中心双极场的下方,其特性由环向磁通和轴向磁通表征.对给定的环向磁通,存在轴向磁通的一个临界值;对给定的轴向磁通,也存在环向磁通的一个临界值.在该临界值以下,磁绳附着于太阳表面,系统处于平衡状态;该临界值一旦被超越,磁绳将脱离太阳表面向上喷发,说明部分开放多极背景磁场中的日冕磁绳系统存在灾变现象.本文算例表明,灾变点对应的磁能阈值超过对应部分开放场(中心双极场开放,两侧的双极场仍维持闭合)能量约15%,其超过部分可为日冕物质抛射一类太阳爆发提供能源.  相似文献   

5.
We investigate the forms of the solar driver which cause the destabilization of helmet streamers. Two forms of solar drivers are considered; (i) emergence of a flux-rope from sub-photospheric levels and (ii) application of a photospheric shear motion to a streamer-flux rope system. Numerical results showed that both cases exhibit the characteristics of commonly observed coronal mass ejections (CMEs), but the propagation speed of the CME is higher than the background solar wind speed when the solar driver is the emerging magnetic flux and is the same as the solar wind speed when the photospheric shear is used as the solar driver. The energy constraint allowing the magnetic field transition from a closed to an open configuration is also addressed.  相似文献   

6.
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption.  相似文献   

7.
两冕流间物质抛射事件的数值模拟   总被引:4,自引:3,他引:1  
二维磁流体力学方程数值敢两冕流间的日冕物质抛射事件。为了能重现两冕流间CME的基本特征,本文在加入一定强度的扰动热压的同时,叠加了一个由圆线电流产生的闭合磁场。模拟结果表明,此类扰动能形成明显的高密度等离子体环形结构,且外环后随一暗脸。它们在径向和横向 都存在不同程度的膨胀。  相似文献   

8.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   

9.
CME在产生和发展过程中与日冕和行星际介质相互作用并发出不同波长的射电辐射.在研究了无CME时空间等离子体的各种辐射机制基础上,统计分析了1999年2月至1999年8月期间有较大的CME发生情况下,在CME影响下L1拉格朗日点附近等离子体参数发生变化后的射电辐射机制.分析结果表明,其射电辐射机制主要是轫致辐射、微量的回旋辐射和更加微弱的复合辐射.此外,分析讨论了1999年2月至1999年8月期间与CME共生的太阳微波爆发.分析结果表明,与CME共生的是微波逐渐型爆发、尖峰爆发,其辐射机制主要是轫致辐射、回旋共振辐射、等离子体辐射及电子回旋脉泽辐射.  相似文献   

10.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

11.
The excitation (flares, ejections, heating, …) of the corona can be understood in terms of the dynamics of the confectively driven magnetized plasma. In particular, anomalous ohmic heating may be a consequence of the formation and rapid dissipation of small-scale magnetic fields in the corona. We have performed numerical simulations of the loop heating model proposed by Parker (1972, 1994), and have studied its dynamics and global power balance in order to assess its viability as a coronal heating candidate, with promising results. Our results suggest the following view of the small-scale dynamics of coronal loops. First of all, photospheric granular motions quasi-statically twist the magnetic field of the corona in a random-walk fashion. In topologically closed structures, the perpendicular magnetic energy increases, causing magnetic shear to build up at the quasi-separatrices of the resulting close-packed magnetic flux tubes. At some point, the boundary driving causes this stressed configuration to cross the threshold of an ideal time-scale MHD instability (possibly magnetic coalescence or resistive tearing) or a point of nonequilibrium and the field lines pinch toward a small-scale sheared configuration. It then becomes energetically favorable for dynamic reconnection to occur, producing narrow current sheets and an Ohmic heating rate sufficient to balance the input Poynting flux.  相似文献   

12.
This work reports the investigation of two coronal mass ejections (CME) observed in white light, H, EUV and X-ray by various instruments both in space and on ground on February 18, 2003 and January 19, 2005, respectively. The white light coronal images show that the first CME began with the rarefaction of a region above the solar limb and was followed by the formation of its leading edge at the boundary of the rarefying region at altitude of 0.46 R from the solar surface. The rarefaction coincided the slow rising phase of the filament eruption, and the CME leading edge was observed to form as the filament eruption started to accelerate apparently. In the early stage of the second CME, a bright loop was first observed above the solar limb with height of 0.37 R in EUV images. We found that the more gradual CMEs initial process, the larger the timing difference between CMEs and their associated flares. The lower part of the filament brightened in H images as the filament rose to a certain height. These brightenings imply that the filament may be heated by magnetic reconnection below the filament in the early stage of the eruption. We suggest that the possible mechanism which led to the formation of the CME leading edge and cavity is magnetic reconnection which occurred under the filament when it reached a certain height.  相似文献   

13.
Mounting observational evidence of the emergence of twisted magnetic flux tubes through the photosphere have now been published. Such flux tubes, formed by the solar dynamo and transported through the convection zone, eventually reach the solar atmosphere. Their accumulation in the solar corona leads to flares and coronal mass ejections. Since reconnections occur during the evolution of the flux tubes, the concepts of twist and magnetic stress become inappropriate. Magnetic helicity, as a well preserved quantity, in particular in plasma with high magnetic Reynolds number, is a more suitable physical quantity to use, even if reconnection is involved.  相似文献   

14.
It is common to use imaging instruments such as EUV and X-ray imagers and coronagraphs to study large-scale phenomena such as coronal mass ejections and coronal waves. Although high resolution spectroscopy is generally limited to a small field of view, its importance in understanding global phenomena should not be under-estimated. I will review current spectroscopic observations of large-scale dynamic phenomena such as global coronal waves and coronal mass ejections. The aim is to determine plasma parameters such as flows, temperatures and densities to obtain a physical understanding of these phenomena.  相似文献   

15.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

16.
Almost 10 years of solar submillimeter observations have shown new aspects of solar activity, such as the presence of rapid solar spikes associated with the launch of coronal mass ejections and an increasing submillimeter spectral component in flares. We analyse the singular microwave–submillimeter spectrum of an M class solar flare on 20 December, 2002. Flux density observations measured by Sun patrol telescopes and the Solar Submillimeter Telescope are used to build the radio spectrum, which is fitted using Ramaty’s code. At submillimeter frequencies the spectrum shows a component different from the microwave classical burst. The fitting is achieved proposing two homogeneous sources of emission. This theoretical fitting is in agreement with differential precipitation through a magnetically asymmetric loop or set of loops. From a coronal magnetic field model we infer an asymmetric magnetic structure at the flare location. The model proposed to quantify the differential precipitation rates due to the asymmetry results in a total precipitation ratio Q2/Q1≈104–105, where Q1(Q2) represents the total precipitation in the loop foot with the high (low) magnetic field intensity. This ratio agrees with the electron total number ratio of the two sources proposed to fit the radio spectrum.  相似文献   

17.
Observations of the Sun show that magnetic flux is emerging through the surface in small scales in rather copious amounts. In order to maintain a steady state field strength, this flux must either be locally dissipated or explelled or both. We believe that magnetic reconnection and subsequent flux explusion is the most effective manner in which to achieve this. If new flux emerges into an already preexisting coronal magnetic field, the ambient field must be pushed aside to allow room for the new flux. If the ambient field strength decreases outward with radial distance as is expected for all stars, it may pinch off the emerging flux through magnetic reconnection and expell it outward. The net force on an isolated diamagnetic plasmoid produced by this process is shown to assume a particularly simple form, depending only on the plasmoid's mass, its temperature, and the radial gradient of the logarithm of the undisturbed magnetic pressure. If a sufficient number of these magnetic elements are produced per unit time, this process translates to a net outward magnetic force on the coronal plasma which can be greater that the gas pressure force. Thus, a stellar wind can be produced by magnetic forces alone without the need for a high coronal gas pressure — a mechanism which could be effective in explaining why stars, such as the late-type giants, which possess cool coronae nevertheless exhibit vigorous coronal expansions.  相似文献   

18.
The interplanetary manifestations of coronal mass ejections, ICMEs, have many signatures in the solar wind but none of these signatures in the velocity, density, temperature, magnetic field, plasma composition or energetic particles uniquely and unambiguously identifies the occurrence of an ICME. Different investigators identify different events when confronted with the same data. Herein, we present a single physical parameter that combines information from multiple plasma components and that holds the promise of defining a beginning and an end of the region of influence ICME and an indication of the location of the encounter with the ICME relative to its central meridian. This parameter is the total plasma pressure perpendicular to the magnetic field, consisting of the sum of the magnetic pressure and plasma kinetic or thermal pressure. It provides a vehicle for classifying the nature of the ICME encounter and, in many cases, provides an unambiguous start and stop time of the event. However, it does not provide a start and stop time for any embedded flux rope. This identification depends on examination of the magnetic field.  相似文献   

19.
太阳活动主要是由磁场产生的, 因此, 对太阳磁场性质和起源的研究具有重要意义. 太阳发电机理论主要研究的是太阳上观测到的与太阳活动相关的磁场起源、磁场特征、各种活动现象之间的相关性及其变化规律. 其是太阳物理学中有待解决的最基本、最重要的问题. 根据太阳黑子及太阳周期的相关观测, 介绍了构成发电机的基本要素, 具体描述了各种典型发电机模型, 并对其分别进行评述, 进而探讨了目前存在的问题及发展方向.   相似文献   

20.
The structure and dynamics of a box in a stellar corona can be modeled employing a 3D MHD model for different levels of magnetic activity. Depending on the magnetic flux through the surface the nature of the resulting coronal structures can be quite different. We investigate a model of an active region for two sunspots surrounded by magnetic field patches comparable in magnetic flux to the sunspots. The model results in emission from the model corona being concentrated in loop structures. In Gudiksen and Nordlund (2005) the loops seen in EUV and X-ray emission outline the magnetic field, following the general paradigm. However, in our model, where the magnetic field is far from a force-free state, the loops seen in X-ray emission do not follow the magnetic field lines. This result is of interest especially for loops as found in areas where the magnetic field emerging from active regions interacts with the surrounding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号