首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A complex radio burst associated with periodic (∼1 and 6 min) pulsations and several kinds fine structures, e.g., normal- and reverse-drifting type III bursts, zebra patterns, and slowly drifting structure was observed with the radio spectrometers (1.0–2.0, 2.6–3.8, 5.2–7.6, and 0.65–1.5 GHz) at the National Astronomical Observatories of China (NAOC) in Beijing and Yunnan on 19 October 2001. In combination with the images of 17 and 34 GHz from NoRH and the magnetograms from MDI we reveal the existence and evolution of preexisting and new emerging sources, and find the horseshoe-shaped structure of microwave sources intensity during the late phase of the burst. Through the detailed comparison of the evolution of each source with the time profiles of radio bursts corresponding to these sources we indicate that the intimate correlation between the microwave sources evolution and the generation of the radio burst associated fine structures. Some fine structures can be considered as the MHD turbulence and plasma emission mechanism, based on the anisotropic beam instability and hybrid waves generations. From the characteristics of observations we may presume that the coronal magnetic structures should contain an extended coronal loop system and multiple discrete electrons acceleration/injection sites. The mechanisms of this complex radio burst are deal with the incoherent gyrosynchrotron emission from the trapped electrons and the coherent plasma emission from the non trapped electrons.  相似文献   

2.
We report high resolution observations of the Intermediate Drift (IMD) bursts in decimetric band (ν = 950 – 2650 MHz). With a time resolution of 20 – 50 ms and a frequency resolution of 4 – 10 MHz, we are able to estimate the characteristics of IMD bursts such as the bandwidth and duration of the emission. Frequency drift rate and its dependence on the frequency are derived for individual IMD structures. All IMD bursts analyzed show negative drift rate. The values are of the order of −28 – −274 MHz s−1. The drift rates normalized by the mean frequency are ranged between −0.20 s−1 and −0.02 s−1. Both the frequency drift rate and its frequency dependence provide important clues to the emission mechanisms of IMD. A comparison and a critique of the existing models based on the plasma and the maser emissions with modulation by Alfvén solitons as well as the whistler wave model are presented.  相似文献   

3.
We present the analysis of the radio observations of December 1, 2004 from 07:00 UT to 07:40 UT in the 1.100–1.340 GHz band by Solar Broadband Radio Dynamic Spectrometer (SBRS) in Huairou Station. There are three groups of radio fine structures during the impulsive phase of this flare denoted by N1, Z2, and Z3. N1 has several emission lines with mixed fast and slow frequency drift rate which may reflect the conditions of flare loop and fast flows out from reconnection site; Z2 and Z3 are zebra patterns. The radio observations combined with hard X-ray and other observations show that the fine structures are connected with energetic particles. The information about magnetic field and energetic particle during the burst are also estimated based on our model.  相似文献   

4.
It has been justifiably questioned if the black hole candidates (BHCs) have “hard surface” why Type I X-ray bursts are not seen from them [Narayan, R., Black holes in astrophysics, New J. Phys, 7, 199–218, 2005]. It is pointed out that a “physical surface” need not always be “hard” and could be “gaseous” in case the compact object is sufficiently hot [Mitra, A., The day of the reckoning: the value of the integration constant in the vacuum Schwarzschild solution, physics/0504076, p1–p6, 2005; Mitra, A., BHs or ECOs: A review of 90 years of misconceptions, in: Focus on Black Holes Research, Nova Science Pub., NY, p1–p94, 2005]. Even if a “hard surface” would be there, presence of strong intrinsic magnetic field could inhibit Type I X-ray burst from a compact object as is the case for Her X-1. Thus, non-occurrence of Type I bursts actually rules out those alternatives of BHs which are either non-magnetized or cold and, hence, is no evidence for existence of Event Horizons (EHs). On the other hand, from the first principle, we again show that the BHCs being uncharged and having finite masses cannot be BHs, because uncharged BHs have a unique mass M = 0. Thus the previous results that the so-called BHCs are actually extremely hot, ultramagnetized, Magnetospheric Eternally Collapsing Objects (ECOs) [Robertson, S., Leiter, D., Evidence for intrinsic magnetic moment in black hole candidates, Astrophys. J., 565, 447–451, (astro-ph/0102381), 2002 ; Robertson, S., Leiter, D., MECO model of galactic black hole candidates and active galactic nuclei, in: New Developments in Black Hole Research, Nova Science Pub., NY, p1–p44, astro-ph/0602453, 2005] rather than anything else get reconfirmed by non-occurrence of Type I X-ray bursts in BHCs.  相似文献   

5.
We present the results of the first observations of the solar microwave burst with fine spectral structure of zebra type at the frequency about 5.7 GHz. The burst has been detected simultaneously by the Siberian Solar Radio Telescope and by the spectropolarimeter of the National Astronomical Observatory of China. Zebra pattern consisted of three parallel stripes with complex frequency drift. The degree of circular polarization of emission reached 100%, the polarization sense corresponded to the extraordinary wave (X-mode). We have determined the plasma parameters in the emission source: plasma density about 1011 cm−3, magnetic field strength 60–80 G. We argue that in the given event the most probable mechanism of the zebra pattern generation is non-linear coupling of harmonics of Bernstein modes.  相似文献   

6.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   

7.
The Rapid Burster is known to show rapidly repetitive bursts (Type II bursts). An interesting feature of the Type II burst is an approximate proportionality of the burst duration to the time to the next burst. The time sequence from a burst to the following quiescent phase can be said to be a time-scale invariant high (burst phase)–low (quiescent phase) transition. The Galactic superluminal source, GRS 1915+105 exhibits a variety of the time variation of the X-ray flux and often repeats transitions between a high-flux level and a low-flux level. In such high–low transitions, Belloni et al. (1997b) found an approximate proportionality between the duration of the low-flux phase and that of the following high-flux phase, over a wide range of the time scale. This low–high transition can again be said to be time-scale invariant. However, an interesting difference between the two time scale invariant transitions is an opposite order of the high and low-flux phase in the time-scale invariant sequence. In the case of the Rapid Burster, the high-flux (burst) phase is the first, while the low-flux phase is the first in the case of GRS1915+105. A limit cycle between an accretion disk in a state of the standard-disk and that in a state of the ADAF (advection dominated accretion flow) is discussed to explain the time-scale invariant high–low (or low–high) transition as well as the difference between the neutron star system and the black-hole system, qualitatively. A phenomenological relation of the accretion disk change with mass ejections from the central part of the disk is also discussed.  相似文献   

8.
We analyse the 30 October, 2004, X1.2/SF solar event that occurred in AR 10691 (N13 W18) at around 11:44 UT. Observations at 212 and 405 GHz of the Solar Submillimeter Telescope (SST), with high time resolution (5 ms), show an intense impulsive burst followed by a long-lasting thermal phase. EUV images from the Extreme Ultraviolet Imaging Telescope (SOHO/EIT) are used to identify the possible emitting sources. Data from the Radio Solar Telescope Network (RSTN) complement our spectral observations below 15 GHz. During the impulsive phase the turnover frequency is above 15.4 GHz. The long-lasting phase is analysed in terms of thermal emission and compared with GOES observations. From the ratio between the two GOES soft X-ray bands, we derive the temperature and emission measure, which is used to estimate the free-free submillimeter flux density. Good temporal agreement is found between the estimated and observed profiles, however the former is larger than the latter.  相似文献   

9.
10.
The double pulsar system, J0737–3039, provides a unique probe of a pulsar magnetosphere due to its edge-on viewing geometry, a tight orbit and a significant rate of advance of the angle of periastron. In this paper, we report on the changes in radio emission from the long period pulsar in this system, J0737–3039B, over a period of 9 months. Observations of this system with Giant Metrewave Radio Telescope (GMRT) show that the duration of the first bright phase of the pulsar centered at 210° orbital longitude from the ascending node is shrinking. These observations will be useful to constrain the proposed models for this system.  相似文献   

11.
Two rocket experiments KOMBI-SAMA with plasma injection at height 100–240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when satellite COSMOS 1809 passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during ≥ 300 s by electric plasma generator separated from the payload. By diagnostic instruments on board of the rocket and the satellite were registered energetic particle fluxes and plasma wave activities stimulated by plasma injection. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by 2 times was registered on board the satellite. An enhancement of energetic particles (E > 40 keV) flux by 4–5 times was registered on board the rocket. Observed ELV emission below 100 Hz is interpreted as generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.  相似文献   

12.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

13.
Observations of total ozone at low latitudes in Brazil have been made using Dobson spectrophotometers since 1974 for Cachoeira Paulista (23.1° S, 45° W) and since 1978 for Natal (5.8° S, 35.2° W). Annual averages, 12 months and 36 months running averages have been analyzed. Spectral analyses of the data revealed that the most important periods found (confidence level> 90%) were: for Natal, 2.5 years (93.1%, quasi-biennial oscillation-QBO) and 10 years (98,2%, possibly the solar cycle signal); for Cachoeira Paulista, 2.4 years (96.8%, QBO) and 8 years (99.6%). The difference in total ozone between maximum and minimum solar cycles were estimated, using yearly averages of total ozone. For solar cycle 21, 1.16% and 1.26% for Natal and Cachoeira Paulista were found; for solar cycle 22, a larger difference of 3.8% for Natal and 4.1% for Cachoeira Paulista were found. The corresponding variation in UV-B at 300 nm, using Beer's law, is 8–10% for C. Paulista and 4–5% for Natal, with maxima occurring during the minimum of the solar cycle.  相似文献   

14.
Type-III bursts are signatures of the electron beams accelerated during the solar flares, their observation and investigation provide information of the acceleration processes, the characteristics of the exciting agent and the acceleration site. The Brazilian Solar Spectroscope (BSS), in operation at INPE, Brazil, have recorded type-III radio bursts in decimetric range (2050–2250 MHz) with high time resolution of 20 ms. Decimetric reverse drift bursts are possibly generated in a dense loop by electron beams travelling towards the photosphere. Hence their time profiles should carry signatures of the density inhomogenities in the loop. Here the temporal and spectral characteristics of decimetric type-III bursts are presented.  相似文献   

15.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   

16.
Radio observations of the eclipse on November 3, 1994, were carried out at Chapecó, Brazil by using a decimetric spectrograph having high spectral and time resolution. The light curve shows that: (1) Time variation of the radio flux before the totality was more compared to that after. (2) During the totality radio emission at 1.5 GHz was observed. Advantage of high spatial resolution ( 3.2 arc sec) possible during solar eclipse enabled us to determine the height of radio emission at 1.5 GHz. (3) Microwave bursts were observed associated with metric Type III-RS bursts. The source size of one of the microwave bursts was 7 arc sec and its physical parameters have been estimated. (4) The time difference between radio and optical contacts suggested for the first time asymmetrical limb brightening at 1.5 GHz.  相似文献   

17.
This work presents the spectral and temporal features of radio bursts with fine structures (FSs) at broad band from 1.1 to 7.6 GHz. Fifteen burst events are studied with high frequency and temporal cadence observation from the Solar Broadband Radio Spectrometer at three frequency bands. It is found that the amount and species of radio FS decrease with increasing frequency band; the pulsation, type III burst and continuum are most frequently recorded; almost in all the burst events, more radio FSs occur before the soft X-ray (SXR) maximum than after; at 1.1–2.06 GHz, all types of radio FSs have more before the SXR peak except fiber; at 2.6–3.8 GHz, pulsation, fiber and spike prefer to appear after the peak; the separation between neighboring emission lines of zebra pattern increases with increasing frequency and the magnetic field deduced from the whistler model is 29–86 G at 1.1–2.06 GHz and 89–268 G at 2.6–3.8 GHz.  相似文献   

18.
A so-called “ISF” prediction method for geomagnetic disturbances caused by solar wind storms blowing to the Earth is suggested. The method is based on a combined approach of solar activity, interplanetary scintillation (I) and geomagnetic disturbance observations during the period 1966–1982 together with the dynamics of solar wind storm propagation (S) and fuzzy mathematics (F). It has been used for prediction tests for 37 geomagnetic disturbance events during the descending solar activity phase 1984–1985, and was presented in 33rd COSPAR conference. Here, it has been improved by consideration of the three dimensional propagation characteristics of each event, the search for the best radio source and the influence of the southward components of interplanetary magnetic fields on the geomagnetic disturbances. It is used for prediction tests for 24 larger geomagnetic disturbance events that produced space anomalies during the period 1980–1999. The main results are: (1) for the onset time of the geomagnetic disturbance, the relative error between the observation, Tobs, and the prediction, Tpred, ΔTpred/Tobs  10% for 45.8% of all events, 30% for 78.3% and >30% for only 21.7%; (2) for the magnetic disturbance magnitude, the relative error between the observation, ∑Kp,obs, and the prediction, ∑Kp,pred, Δ∑Kp,pred/∑Kp,obs  10% for 41.6% of all events, 30% for 79% and 45% for 100%. This shows that the prediction method described here has encouraging prospects for improving predictions of large geomagnetic disturbances in space weather events.  相似文献   

19.
Magnetic reconnection occurs during eruptive processes (flares, CMEs) in the solar corona. This leads to a change of magnetic connectivity. Nonthermal electrons propagate along the coronal magnetic field thereby exciting dm- and m-wave radio burst emission after acceleration during reconnection or other energy release processes in heights of some Mm to ⩾700 Mm. We summarize the results of some case studies which can be interpreted as radio evidence of magnetic reconnection: under certain conditions, simple spectral structures (pulsation pulses, reverse drift bursts) are formed by simultaneously acting but widely spaced radio sources. Narrowband spikes are emitted as a side-effect during large-scale coronal loop collisions. In dynamic radio spectra, the lower fast mode shock formed in the reconnection outflow appears as type II burst-like but nondrifting emission lane. It has been several times observed at the harmonic mode of the local plasma frequency between 250 and 500 MHz and at heights of ≈200 Mm.  相似文献   

20.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号