首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文设计并验证了基于卷积神经网络的边界层近壁流动高分辨率平均速度场预测方法:首先采用示踪粒子图像对数据集训练卷积神经网络,通过调整神经网络参数可以预测示踪粒子在数据集上的平均跨帧位移;然后使用该卷积神经网络预测像素空间中各像素位置的单粒子位移,得到高分辨率的平均速度场信息。将该方法用于预测湍流脉动较小的边界层近壁区的平均流动,能够将空间分辨率提高到单像素精度。误差分析发现,该方法获得的测速精度略优于传统单像素系综平均互相关算法,且对粒子浓度和示踪粒子图像对数目的要求明显低于后者。  相似文献   

2.
光流测量技术作为一种新的空气动力学实验技术,以其像素级分辨率的矢量场测量优势获得广泛的应用。光流测量技术使用光流约束方程,配合平滑限定条件,可以进行速度场测量,获得高分辨率的全局矢量场。首先通过研究积分最小化光流测速理论和算法,采用C++编写光流速度测量程序,然后通过3种典型人工位移图像对光流计算程序进行验证,并将结果和标准位移分布进行比对分析,以指导如何在实际应用中获得高精度光流速度场,最后进行小型风洞后向台阶实验,利用高速相机拍摄示踪粒子图像,使用光流计算程序获得速度矢量场,同采用互相关算法的粒子图像测速计算结果进行比较,体现出光流计算方法像素级分辨率的矢量场测量优势。  相似文献   

3.
传统的利用遥感数据检测涡旋的方法通常是基于物理参数、几何特征、手工特征或专家知识。本文重点研究了基于深度学习技术从海表面高度图中识别海洋涡旋的方法。针对海洋卫星拍摄的海洋表面高度图中的涡旋检测问题,提出了一种基于卷积神经网络的多涡旋检测模型,该模型能够准确提取涡旋的特征信息,拟合语义信息与海面高度之间的关系。同时,在用于涡旋检测的最新公开数据集SCSE-Eddy上进行模型训练,以评估基于人工智能的涡旋检测方法性能,该数据集涵盖了15年来位于中国南海及其东部部分海域的每日卫星遥感海表面高度数据。实验结果表明,与现有的方法相比,本文模型取得了更好的检测结果,能够更好地区分相距较近的涡旋。  相似文献   

4.
基于分块图像的二值商标图像检索   总被引:1,自引:0,他引:1  
提出了一种基于分块图像特征的商标图像检索方法。该方法首先确定商标图像的形状主方向来消除图像旋转带来的影响,然后通过提取目标区域的方式消除图像平移的影响,再将图像的目标区域按照4叉树的分解方式划分为多个小的子图像块,对子图像块提取特征并对图像进行相似性度量。实验证明,利用该方法提取的特征兼顾了商标图像在局部和整体上的一致性,并且具有良好的旋转、平移、尺度的不变性,得到的检索结果能够很好地满足人类的视觉感受。  相似文献   

5.
从低分辨率流场数据中获取精细流场信息具有重要的研究意义。基于卷积神经网络的超分辨率重构方法是近年来发展的一种较为有效的精细流场重构方法。本文采用高效亚像素卷积神经网络(Efficient Sub-Pixel Convolutional Neural Network,ESPCN),对Rayleigh–Bénard(RB)对流的数值模拟数据和湍流边界层(Turbulent Boundary Layer,TBL)的实验测量数据进行了超分辨率重构,并与双三次插值方法(Bicubic Interpolation)的重构结果进行对比。对比结果表明:在较小的下采样比下,ESPCN方法和Bicubic方法的重构精度相当;在较大的下采样比下,ESPCN方法的重构精度明显优于Bicubic方法。此外,ESPCN方法对数据梯度较大区域的超分辨率重构效果优于Bicubic方法。  相似文献   

6.
针对金相图中分割问题,在分析对比传统的全局阈值分割方法的基础上,提出了一种自适应阈值分割方法。将原图像划分为若干子块,对每个子块利用最佳阈值的方法进行分割。实验表明,提出的方法简便易行,具有较好的鲁棒性和适应性;在完整、有效分割图像的同时,能够保留原始图像中的大量细节信息,对复杂背景图像的分割处理效果满意。本文研究为今后金相分析提供了可靠的依据。  相似文献   

7.
改进的基于二维直方图的最大模糊熵分割方法   总被引:2,自引:0,他引:2  
针对基于一维直方图的传统模糊熵算法对噪声敏感的问题,提出了一种新的基于二维直方图的最大模糊熵图像分割算法。新算法根据中心像素与邻域均值之间的关系划出二维灰度直方图中的有效区域,并考虑了图像的空间信息,将二维灰度直方图中像素的邻域均值的隶属度与中心像素隶属度相结合,得出新的隶属度计算方法,然后通过最大化模糊熵函数来确定图像的最优分割阈值。通过对实际图像的分割实验,表明了本文算法具有良好的去噪和图像细节保持能力。  相似文献   

8.
高光谱遥感图像具有大量的光谱波段,有助于地物的精细分类与识别。然而,随着波段的增加,数据冗余度也相应增加,使得图像融合计算量增大,过程繁杂。因此,提出了基于波段背景清晰度的小波加权平均高光谱图像融合方法:以J-M距离和最佳指数值为指标提取优选波段组合,以减少波段数据冗余,提高信息互补,使之有利于高光谱图像融合。该算法包含如下3个步骤:首先,利用J-M距离和最佳指数选择原则,从HSI高光谱遥感图像的115个波段中提取所需优选波段及优选波段组合。其次,采取单波段遥感图像背景清晰度处理的EM算法对所选波段进行遥感图像增强预处理。最后,采用小波加权平均的像素级融合优选波段遥感图像增强数据,使得融合图像质量更优。实验结果表明:本文方法提高了融合图像的标准差、信息量和清晰度,使地物空间细节能力增强,地物特征更加明显。  相似文献   

9.
提出了一种包含区域信息的Snake模型用于运动目标检测与跟踪。在通常情况下,基于区域信息的跟踪方法对背景光线的微小变化、位置的微小移动较为敏感,而基于边缘信息的跟踪方法则难以对边缘模糊的图像取得满意的跟踪效果。在算法中同时引入这两种信息,边缘信息使得算法快速而鲁棒性好,区域信息可以对边缘模糊的图像取得正确的跟踪效果。使用双差分图像设计了自动初始化的方法来实现视频的自动跟踪。同时,对目标的下一步运动位置增加了一个预测环节来加快主动轮廓模型的收敛速度。该算法的每帧计算时间一般小于0.1S,能应用于实时系统。  相似文献   

10.
论述一种从图像序列中重建出全方位全景图像的技术 ,旨在克服镜头只是纯粹的摇摄时许多成像条件限制。在块匹配算法中 ,如何选取最佳配准基本块对于增强算法的鲁棒性和性能是非常重要的。本文在包含主要视觉特征的高频图像中自动选取最佳配准基本块 ,为了能够减少累积的配准误差 ,采用了基于相位相关的、带旋转校正的全局配准算法 ,从而得到解决了平移和旋转的优化图像块。然后 ,采用了基于 Levenberg-Marquardt非线性递归型最优化算法 ,解决由于镜头的视差和不规则变形带来的局部误差。文中还采用平滑滤波器解决了在两幅图像镶嵌出可能由于累积配准误差而出现明显的条缝  相似文献   

11.
针对现有的基于判别型或聚类型的图像,用分割方法无法处理被噪声污染的图像的现状,提出一种新的两步式图像分割框架。该框架首先利用图像的局部信息重塑图像的灰度直方图,增强了像素的类间散布性和类内紧凑性,然后将现有的基于判别型或基于聚类型图像分割方法在重塑图像上执行,从而提高了现有图像分割算法的有效性和鲁棒性。文中用典型的聚类型方法高斯混合模型来说明该框架的可行性。由于框架的两个步骤具有独立性.因此可推广到现有的其他基于像素或直方图的方法。在人工和真实图像上的实验结果证明,这种两步图像分割框架可以获得有效且鲁棒的图像分割结果。  相似文献   

12.
高速风洞视频测量试验环境中,复杂的光照条件容易导致采集的图像序列出现闪烁,影响测量结果的精度。在测量图像中,由于照明变化导致的灰度变化和目标运动、变形引起的局部变化耦合在一起,导致基于仿射变换模型(线性或非线性)的修正方法难以适用。尺度时间的直方图均衡方法(STE)利用尺度空间理论,对各图像直方图中每一个灰度值组成的曲线在时间维度上进行高斯卷积得到目标直方图,再通过直方图匹配获得闪烁修正后的图像。针对日光灯照明下的相机标定板图像、存在运动和变形的风洞模型变形测量试验图像和存在油膜形态变化的油流试验图像开展了应用研究。结果表明,该方法适用于图像序列的全局闪烁修正,与基于模型的方法相比,其修正效果不依赖于基准图像,对图像抖动、局部存在目标运动或变形等干扰因素的鲁棒性强,且方法简单,计算量小,具有较高的工程应用价值。  相似文献   

13.
基于线性模型最优预测的高光谱图像压缩   总被引:2,自引:0,他引:2  
高光谱图像取得较高的光谱分辨率对于分类和识别很有益.但与此同时也带来了巨大的数据量,使其压缩成为必需.传统的预测方法能够在一定程度上去除谱带之间的相关性,但其预测系数不能利用高光谱图像谱带间的信息进行自适应的调整,使得预测效果不是最优.本文建立了高光谱图像谱带间的线性模型,推导出在信噪比最优下的预测.该方法能够更好地降低预测后图像的熵值.实验表明,相对于传统方法重建的平均信噪比提高了4.606 4 dB.  相似文献   

14.
在分析几种常用背景抑制方法的基础上,利用二代曲线波变换具有的优良特性,提出一种基于二代曲线波变换的红外弱小目标背景抑制方法.首先利用曲线渡变换对图像进行分解提取图像的多尺度细节特征;然后对分解后的低、高频子带分别采用变分和模糊非线性变换进行处理来调整目标特征的强度,重构子带获得预测的背景图像;最终将其与原图相减得到背景抑制后的图像.实验结果表明,与几种经典方法相比,该方法在主现视觉和客观评价指标两方面均表现出良好的效果.  相似文献   

15.
提出了一种改进的特征点运动矢量估计方法,用于动态序列图像中的运动目标跟踪。首先利用改进的最小亮度变化算法提取特征点;然后通过自适应的十字模式搜索法确定这些特征点的匹配点。在RANSAC方法的基础上,利用运动背景的仿射变换参数实现运动背景的补偿。最后利用合理的形态滤波技术,运动目标将完整地从背景中提取出来并实现准确跟踪。实验结果表明,改进的方法可以成功完成运动背景的补偿,并为动态序列图像的运动目标跟踪提供了保证。  相似文献   

16.
近年来,基于图论的聚类算法被广泛地应用在数据聚类和图像分割之中。聚类任务主要是挖掘一组给定数据隐含的分布规律和结构信息,而图像分割则是将一幅图像划分为若干互不交迭区域的过程。主要讨论两种比较流行的基于图论的聚类算法,即基于有向树的数据聚类算法和基于最小生成树的图像分割算法。创新在于:(1)改进基于有向树的数据聚类算法,将其应用于图像分割;(2)改进基于最小生成树的图像分割算法,将其应用于数据聚类。在人工数据和实际图像数据上的实验结果表明,改进的有向树算法可以很好地分割图像并保留图像中足够的细节,而改进的最小生成树聚类算法能比较好地聚类具有流形结构的人工数据。  相似文献   

17.
针对基于点云构建的建筑物模型通常存在的表面凹凸不平、边缘锯齿等现象,以及建筑物模型中存在的视觉效果不佳的问题,本文提出了一种基于倾斜影像三维线特征约束的三维模型优化方法。该方法以重叠区域为依据对线段进行质量评估与筛选。然后采用选权迭代思想对三维线段进行择优重构,以三角网为单元进行平面拟合与模型表面的纠正与优化,以三维线段为辅助对模型边缘的三角网进行纠正与优化。采用无人机倾斜摄影数据进行实验,将本文方法与Poisson表面重建方法进行了比较,结果表明本文方法有效地消除了平面凸包和边缘锯齿,边缘精度优化至1像素以内,平面精度优化至0.5像素,模型总体精度比Poisson表面重建方法提升了近1倍。此外,对比现有的完全基于点云模型重建算法,本文方法极大地改善了模型的视觉效果,保持了三维模型平面与边缘的特征,模型的边缘和表面精度都得到了提升。  相似文献   

18.
月面采样量的在轨自主测量是实现月面自主采样的必要环节。本文设计了一种月面采样装置,根据图像信息实现对月面采样量的在轨自主测量。针对图像中目标与背景灰度差较小、背景区域噪声较多的特点,采用了改进型最大类间方差法与连通标记自适应去噪方法,实现了采样区域较为准确的分割。针对单目相机无法直接获取采样区域尺寸的特点,利用已知物体尺寸进行在轨自主标定,结合图像中提取出的采样区域,完成了采样区域尺寸的计算,实现了采样量的在轨自主测量。试验结果表明,在轨自主测量结果与实际结果吻合,本文提出的在轨自主测量方法有效。  相似文献   

19.
基于序列图像的非合作目标自主导航及验证   总被引:1,自引:0,他引:1  
针对空间自旋或章动运动的非合作目标运动感知与估计问题,给出了一种基于序列图像的运动测量与状态估计方法。所给出的方法由两部分组成:(1)采用立体视觉测量目标三个非共线的特征点,建立目标参考系并实现相对姿态的测量;(2)采用目标运动学和动力学方程,推导了扩展卡尔曼滤波器,实现目标角速度和惯量比的估计。最后,分别给出了数学仿真和物理试验:(1)利用数学仿真验证了所给出的卡尔曼滤波估计算法在不同目标运动情况下的收敛性;(2)利用机械臂模拟目标的自旋运动,利用双目相机采集目标运动图像,试验结果验证了所给出的运动测量与状态估计方法可以连续的给出目标角速度的精确估计。  相似文献   

20.
现有的自适应对抗学习方法采用固定惩罚因子在不同特征层进行监督学习,并采用FCN(Fully Convolutional Networks)作为判别器的基础框架,模型缺少泛化能力,在分割较复杂场景时易造成类感染和类漂移。针对该问题,提出了一种学习率自适应的对抗学习的图像语义分割方法。该方法设计了一种类似SegNet结构的网络判别器,采用最大池化进行非线性上采样,既继承了FCN的优势,可以输入任一大小的图像,又保留了相对精细化的特征相关性信息。由于提出的模型可以通过自适应学习率调整对抗损失与交叉熵损失的权值,从而更新生成器的分割网络,所以提高了语义分割的精度;此外,提出的模型在判别器中采用了SegNet框架代替FCN框架,克服了暴力池化问题,且能够将未标记目标数据集的边缘信息引入网络结构中,从而能有效纠正网络的边缘区域,较好地保持图像的边缘细节,从而使分割结果更为精细。在PASCAL VOC2012标准数据集进行实验,并与现有的性能较好的弱监督分割模型相比,实验结果表明:本文模型能够更精细地分割出较复杂背景的目标,有效地缓解类感染和类漂移,并且有效地保留了边缘细节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号