首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Current dayside optical studies of Aurora Australis from the Amundsen-Scott Research Station at the South Pole (74 degrees magnetic latitude) show some striking differences from optical results reported from Svalbard. A 6-channel meridian scanning photometer operating during the past three austral winters shows, in particular, the 630 nm emission is much lower, on average, than the Arctic dayside aurora and very weak on some days. The 558 nm intensity is higher relative to 630 nm suggesting the incoming electrons have a higher average energy. There are notable differences in auroral forms, giving further evidence of asymmetries in the two dayside ovals.  相似文献   

2.
Numerous measurements of the neutral upper atmosphere above 100 km have been made from spacecraft over Venus and over Mars. The Venus exospheric temperatures are unexpectedly low (less than 300°K near noon and less than 130°K near midnight). These very low temperatures may be partially caused by collisional excitation of CO2 vibrational states by atomic oxygen and partially by eddy cooling. The Venus atmosphere is unexpectedly insensitive to solar EUV variability. On the other hand, the Martian dayside exospheric temperature varies from 150°K to 400°K over the 11-year solar cycle, where CO2 15-μm cooling may be less effective because of lower atomic oxygen mixing ratios. On Venus, temperature increases with altitude on the dayside (thermosphere), but decreases with altitude from 100 to 150 km on the nightside (cryosphere). However, dayside Martian temperatures near solar minimum for maximum planet-sun distance and low solar activity are essentially isothermal from 40 km to 200 km. During high solar activity, the thermospheric temperatures of Mars sharply increase. The Venus neutral upper atmosphere contains CO2, O, CO, C, N2, N, He, H, D and hot nonthermal H, O, C, and N, while the dayside Mars neutral upper atmosphere contains CO2, O, O2, CO, C, N2, He, H, and Ar. There is evidence on Venus for inhibited day-to-night transport as well as superrotation of the upper atmosphere. Both atmospheres have substantial wave activity. Various theoretical models used to interpret the planetary atmospheric data are discussed.  相似文献   

3.
Observations of total ozone at low latitudes in Brazil have been made using Dobson spectrophotometers since 1974 for Cachoeira Paulista (23.1° S, 45° W) and since 1978 for Natal (5.8° S, 35.2° W). Annual averages, 12 months and 36 months running averages have been analyzed. Spectral analyses of the data revealed that the most important periods found (confidence level> 90%) were: for Natal, 2.5 years (93.1%, quasi-biennial oscillation-QBO) and 10 years (98,2%, possibly the solar cycle signal); for Cachoeira Paulista, 2.4 years (96.8%, QBO) and 8 years (99.6%). The difference in total ozone between maximum and minimum solar cycles were estimated, using yearly averages of total ozone. For solar cycle 21, 1.16% and 1.26% for Natal and Cachoeira Paulista were found; for solar cycle 22, a larger difference of 3.8% for Natal and 4.1% for Cachoeira Paulista were found. The corresponding variation in UV-B at 300 nm, using Beer's law, is 8–10% for C. Paulista and 4–5% for Natal, with maxima occurring during the minimum of the solar cycle.  相似文献   

4.
Active longitudes play an important role in spatial organization of solar activity. These zones associated with complexes of solar activity may persist for 20–40 consecutive rotations, and may be caused by large-scale non-axisymmetrical components of the global magnetic field. These zones of the field concentrations are 20°–40° wide and during subsequent rotations tend to reappear at constant longitude or drift slightly eastward or westward. Since the magnetic field is the principle source of the variations of radiation on the solar surface the active longitudes affect the solar irradiance received at the Earth. In this paper I study connections between the active longitudes and irradiance variations using VIRGO/SOHO, KPO and WSO data, which covered the transition period from solar cycle 22 to cycle 23 and rising phase of cycle 23. The result of this investigation is that active longitudes are associated with increases of the total solar irradiance and are prime sources of enhanced EUV radiation and coronal heating.  相似文献   

5.
The differential rotation of the patterns of the large-scale solar magnetic field during solar activity cycles 20 and 21 is investigated. Compact magnetic elements with the polarity of the general solar magnetic field have larger speed of rotation than the elements with the opposite polarity. The surface of the Sun was divided by 10°-zones. In all of them the average rotation rate of the magnetic elements with negative polarity is little higher than that of the magnetic elements with positive polarity, except for 50°-zone of the south hemisphere and at the 10° latitude of the north hemisphere.

The rates of differential rotation for large-scale magnetic elements with negative and positive polarities have similar behavior for both cycles of the solar activity.

The rotation rate varies at polarity reversal of the circumpolar magnetic fields. For the cycle No 20 in 1969–1970 the threefold reversal took place in the northern hemisphere and variations of rotation rate can be noticed for magnetic elements both with positive and negative polarity for each 10°-zone in the same hemisphere.  相似文献   


6.
The Forbush decreases of cosmic ray flux occur prevailingly together with geomagnetic storms, because these phenomena have a similar origin in solar/interplanetary processes. To study the effects of large Forbush decreases on total ozone at middle latitudes, we use the TOMS total ozone data along latitudinal circles 40°N and 50°N. The effects of Forbush decreases are found to occur or to be non-measurable under the same conditions as those of geomagnetic storms: certain effect occurs only at 50°N (not 40°N), in winter, under conditions of high solar activity and the east phase of the QBO. However, the effects of the analyzed Forbush decreases are weaker than the effects of strong geomagnetic storms.  相似文献   

7.
A new meteor radar system was installed at the Amundsen–Scott station South Pole in 2001 to further the understanding of the dynamics of the Antarctic region. The antenna array consists of four yagis pointed along the 0°, 90°, 180°, and 270° meridians and five folded crossed dipoles arranged in a cross configuration and operating as an interferometer to provide position measurements for the detected radio meteors. The four yagis are time division multiplexed and used for both transmitting and receiving while the five folded crossed dipoles are only used for reception. The current arrangement of data acquisition (DAQ) systems at the South Pole allows the collection of meteors in a configuration similar to the previous meteor radar system that operated at the South Pole in the mid 1990s while also using an interferometer to accurately determine the meteor positions in the sky, which enables the determination of the vertical structure of the observed waves. This has been accomplished through the use of two DAQ and post-processing systems: COBRA (Colorado Obninsk radar) connected to the yagis and MEDAC (meteor echo detection and collection) connected to the folded crossed dipoles. With two separate DAQ systems operating in parallel we have the ability to directly compare the results and understand the inherent variability in the derived scientific results based on different system architectures and processing assumptions. The impact of operating a system without an interferometer on the amplitudes and phases of the observed wave components is considered. We find that the lack of altitude resolution of the COBRA DAQ system leads to an underestimation of the amplitude of the s = 1 component of the semidiurnal tide of ∼20% during the summer months.  相似文献   

8.
The Di Giovanni/Radicella model (DGR) /1/ determines a bottom side electron densty profile alone from the set of routinely scaled ionogram parameters foE, foF1, foF2 and M(3000)F2 and the total electron content; the smoothed sunspot number R12 appears in the calculation. Present designations are DGR2/2/ and DRR3 /3/ [see Appendix]; they are valid in the northern hemisphere. DGR is compared with electron density profiles derived from ionograms obtained at Juliusruh (54.6°N, 13.4°E), and with the (URSI-based) IRI90 at different conditiones. Experimental total electron content (TEC) data are compared to both models. At the considered station, the profiles obtained by both models are reasonably in agreement amongst themselves and with the experimental data.

The TEC derived from the DGR3 model is in good agreement with experimental TEC, whereas, at high solar activity, IRI90 gives too high TEC values, especially during daytime.  相似文献   


9.
We describe the differential energy spectrum of trapped particles measured by a solid-state charged particle telescope in the mid-deck of the Space Shuttle during the period of solar maximum. The telescope was flown in two high altitude flights at 28.5° and 57° inclination. Assuming, as is normally done, that the variations of Shuttle orientation during the missions lead to average isotropic incident spectra, the observed spectrum disagrees significantly from AP8 model calculations. This indicates the need to take into consideration the variations of solid-angle direction relative to the magnetic field. The measurements show that there is a very significant flux of secondary light ions. The energy spectra of these ions does not agree with the production spectrum from radiation transport calculations based on omni-directional AP8 Max model as an input energy spectrum.

We also describe measurements of linear energy transfer spectra using a tissue equivalent proportional counter (TEPC) flown both in the mid-deck and the payload bay of the Space Shuttle. Comparisons are made between linear energy transfer spectral measurements AP8 model-based radiation transport predictions, and thermoluminescent dosimeter (TLD) measurements. The absorbed dose-rate measurements using TLD's are roughly 25% lower than the TEPC-measured dose rate measurements.  相似文献   


10.
A two-dimensional dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the changes of the Earth's ozone layer occurred during the 21st and 22nd solar cycles. The calculated global total ozone changes in the latitude range 60°S—60°N caused by 11-year variation of solar UV radiation, volcanic eruptions, and anthropogenic atmospheric pollution containing CO2, CH4, N2O and chlorine and bromine species are in a rather good agreement with the observed global ozone trend. The calculations show that the anthropogenic pollution of the atmosphere is a main reason of the ozone depletion observed during the last two solar cycles. However, the 11-year solar UV variation as well as volcanic eruptions of El Chichon and Mt. Pinatubo also gave a significant contribution to the observed global ozone changes.  相似文献   

11.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

12.
Plasma transport is very important for understanding the space-time variations of the ionosphere. Therefore, following a resolution of URSI Subcommission G4, an effort is made to create a computer code describing the main results of investigations the ionospheric drift which were not considered in IRI-1979.

The experimental data from 23 stations in the Northern Hemisphere were obtained between 1957 and 1970. The worldwide coverage in geographic latitude is 7°N to 71°N (7.5° to 64.1° geomagnetic) and O° to 131°E geographic longitude.

We have developed appropriate procedure which allow us to infer from these data the main parameters of the global ionospheric motions at E- and F-region levels.

An algorithm for computing the zonal and meridional drift components VX, VY can be found in IRI-1990.

The last version of the computer programm called DRIFT which does the test calculation of Ionospheric Drifts Global Model whith printing the tables at the Epson printer is written in Turbo ascal for the IBM PC AT 286/287 compatible computers. Program code (execute module) is about 25 Kbyte. Data files are about 10 Kbyte.

E- and F-region horizontal ionospheric irregularities drift data, worldwide obtained from 1957 to 1970 by D1 and D3 methods, are statistically analysed and a computer code for the average velocity variations in latitude and local time for some solar activity levels is constructed. The PC program DRIFT allows to determine zonal and meridional drift velocities of ionospheric irregularities at the lower (90 < h < = 140 km) and upper (h > 140 km) ionosphere.

The main block of the program DRIFT is the procedure DRIRR for calculating VX and VY for a period (P), geomagnetic (geographic) latitude (FI) and local time (LT) to be specified.

The example of the program DRIFT calculation for F-region (REG=2) and for the whole period of observations (P=1) is in Table. VX > 0 to east, VY > 0 to north. FI is geomagnetic latitude.  相似文献   


13.
The Cosmic-Ray Energetics And Mass balloon-borne experiment has been launched twice in Antarctica, first in December 2004 and again in December 2005. It circumnavigated the South Pole three times during the first flight, which set a flight duration record of 42 days. A cumulative duration of 70 days within 13 months was achieved when the second flight completed 28 days during two circumnavigations of the Pole on 13 January 2006. Both the science instrument and support systems functioned extremely well, and a total 117 GB of data including 67 million science events were collected during these two flights. Preliminary analysis indicates that the data extend well above 100 TeV and follow reasonable power laws. The payload recovered from the first flight has been refurbished for the third flight in 2007, whereas the payload from the second flight is being refurbished to be ready for the fourth flight in 2008. Each flight will extend the reach of precise cosmic-ray composition measurements to energies not previously possible.  相似文献   

14.
The scientific rationale of the Solar Orbiter is to provide, at high spatial (35 km pixel size) and temporal resolution, observations of the solar atmosphere and unexplored inner heliosphere. Novel observations will be made in the almost heliosynchronous segments of the orbits at heliocentric distances near 45 R and out of the ecliptic plane at the highest heliographic latitudes of 30° – 38°. The Solar Orbiter will achieve its wide-ranging aims with a suite of sophisticated instruments through an innovative design of the orbit. The first near-Sun interplanetary measurements together with concurrent remote observations of the Sun will permit us to determine and understand, through correlative studies, the characteristics of the solar wind and energetic particles in close linkage with the plasma and radiation conditions in their source regions on the Sun. Over extended periods the Solar Orbiter will deliver the first images of the polar regions and the side of the Sun invisible from the Earth.  相似文献   

15.
16.
Observations of galactic cosmic rays (GCRs) from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that in addition to a possible global asymmetry in the north–south dimensions (meridional plane) of the heliosphere, it is also possible that different modulation (turbulence) conditions could exist between the two hemispheres of the heliosphere. We focus on illustrating the effects on GCR Carbon of asymmetrical modulation conditions combined with a heliosheath thickness that has a significant dependence on heliolatitude. To reflect different modulation conditions between the two heliospheric hemispheres in our numerical model, the enhancement of both polar and radial perpendicular diffusion off the ecliptic plane is assumed to differ from heliographic pole to pole. The computed radial GCR intensities at polar angles of 55° (approximating the Voyager 1 direction) and 125° (approximating the Voyager 2 direction) are compared at different energies and for both particle drift cycles. This is done in the context of illustrating how different values of the enhancement of both polar and radial perpendicular diffusion between the two hemispheres contribute to causing differences in radial intensities during solar minimum and moderate maximum conditions. We find that in the A > 0 cycle these differences between 55° and 125° change both quantitatively and qualitatively for the assumed asymmetrical modulation condition as reflected by polar diffusion, while in the A < 0 cycle, minute quantitative differences are obtained. However, when both polar and radial perpendicular diffusion have significant latitude dependences, major differences in radial intensities between the two polar angles are obtained in both polarity cycles. Furthermore, significant differences in radial intensity gradients obtained in the heliosheath at lower energies may suggest that the solar wind turbulence at and beyond the solar wind termination shock must have a larger latitudinal dependence.  相似文献   

17.
The performance of JB2008 and NRLMSISE-00 models, in describing the response of the thermosphere to magnetic activity are evaluated against total mass density retrieved from accelerometer measurements made onboard CHAMP satellite during 5 years. We show that the global low- to mid-latitude disturbance amplitude is correctly described by the JB2008 model for low solar activity conditions and by both the JB2008 and the NRLMSISE-00 models for high solar activity conditions. For low solar activity conditions, statistics based on almost 3 years of data confirm the large underestimation by the NRLMSISE-00 model quantified by Lathuillère et al. (2008) for the year 2004. We also found that the time delay between low- to mid-latitude global thermosphere disturbance and magnetic activity is statistically well estimated by the NRLMSISE-00 and JB2008 models for disturbed conditions. For moderately disturbed conditions however, the time delay estimated by the JB2008 model is too large by about 3 h. For very disturbed conditions, we found different time delays during day-time and night-time, using new geomagnetic proxies with a 30-min time resolution.  相似文献   

18.
We report the statistical properties of narrow coronal mass ejections (CMEs, angular width < 20°) withparticular emphasis on comparison with normal CMEs. We investigated 806 narrow CMEs from an online LASCO/CME catalog and found that (1) the fraction of narrow CMEs increases from 12% to 22% towards solar maximum, (2) during the solar maximum, the narrow CMEs are generally faster than normal ones, (3) the maximum speed of narrow CMEs (1141 km s−1) is much smaller than that of the normal CMEs (2604 km s−1). These results imply that narrow CMEs do not form a subset of normal CMEs and have a different acceleration mechanism from normal CMEs.  相似文献   

19.
Results of a detailed analysis of heavy ion fluences measured on the Salyut and MIR orbital stations from 1978 to 1990 are presented. The analysis has made use of new models that describe the cosmic ray fluxes and their transition through the magnetosphere. The penetration of solar cosmic ray particles to the orbit, the increase of the (ScCr)/Fe flux ratio in the orbit, and the occurrences of 200–500 MeV/nucl heavy nuclei in <30° latitudes have been analyzed.  相似文献   

20.
We used total electron content (TEC) data measured by Faraday rotation technique over Cachoeira Paulista (22.5°S, 45°W), in Brazil, to study the TEC variations with the solar flux at 10.7 cm (F10.7) and to compare the results with the IRI90 predictions. The data were divided into summer, equinox and winter. During the analysed period F10.7 varied from 66 up to 330. Our data shows that the observed TEC at 1600 LT (around the diurnal maximum) and at 0500 LT (around the diurnal minimum) increases with F10.7 until saturation is reached which occurs at F10.7≈210 to 220 for equinox and summer, and at F10.7≈180 for winter months. Comparison with the IRI90 predictions shows that IRI overestimates the TEC at 0500 LT for all solar flux values. At 1600 LT, IRI overestimates the observed TEC for low solar flux but underestimates it for high solar flux values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号