首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel topology, current-fed multiresonant dc-dc converter (CF-MRC) was studied theoretically and experimentally. The new topology differs from previously described current-fed push-pull parallel-resonant topologies in the fact that the output is coupled to the current of the resonant inductor and in the addition of a second capacitor across the transformer. The main features of the proposed converter are an inherent protection against a short and open circuit at the output, a high voltage gain and zero voltage switching (ZVS) over a large range of output voltage. These characteristics make it a viable choice for applications, such as a high voltage capacitor charger, that require controllable current sourcing over a wide output voltage swing.  相似文献   

2.
The characteristics of a push-pull parallel resonant converter (PPRC) when operated as a DC-DC transformer were investigated theoretically and experimentally. In the DC-DC transformer region, the voltage transfer ratio of the PPRC was found to be practically constant and independent of the input voltage and load. In this mode, all the switching elements operate in the zero voltage switching (ZVS) condition. Another important feature of the proposed DC-DC transformer is the ability to drive it by an arbitrary switching frequency, provided that the latter is lower than the self-oscillating frequency. This permits the synchronization of the converter to a master clock. The analytical expressions for voltage and current stresses, as well as the other key parameters derived, are applied to develop design guidelines for the DC-DC transformer. The proposed topology was tested experimentally on a 100-W unit which was run in the 200-kHz frequency region  相似文献   

3.
A 10 kW DC-DC converter using IGBTs with active snubbers   总被引:1,自引:0,他引:1  
This full bridge DC-DC converter employs zero voltage switching (ZVS) on one leg and zero current switching (ZCS) on the other. This technique produces exceptionally low insulated-gate bipolar transistor (IGBT) switching losses through the use of an active snubber that recycles energy back to the source. Experimental results are presented for a 10-kW, 20-kHz converter  相似文献   

4.
A new single-phase high power factor rectifier is proposed, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current-switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the switches and zero-voltage-switching (ZVS) in the diodes. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM switch model is used to predict the system performance. A prototype rated at 1 kW, operating 60 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage 400 V/sub dc/ has been implemented in laboratory. An efficiency of 97.2% and power factor near 0.99 has been measured. The analysis and design of the control circuitry are also presented.  相似文献   

5.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

6.
Design optimization for asymmetrical ZVS-PWM zeta converter   总被引:1,自引:0,他引:1  
In this paper, a new soft-switching Zeta converter with an asymmetrical pulsewidth modulation (PWM) control is proposed. The proposed Zeta converter has the features of constant frequency operation, zero voltage switching (ZVS), and low voltage stress on the active switches. Moreover, it can achieve high power density, high efficiency, low switching loss, and low component count, which make converter operation at low to medium power level feasible. Operational principle of the Zeta converter is presented in detail, and a specific example is designed and implemented to verify its feasibility.  相似文献   

7.
A 1 /spl phi/ high-frequency (HF) transformer isolated, soft-switching single-stage ac-dc converter with low line-current harmonic distortion is presented. Its operation is explained with equivalent circuits for the various intervals. The converter is analyzed and design curves are obtained. An optimization parameter is introduced and a systematic design procedure is illustrated with a design example. Detailed SPICE simulation and experimental results of a 500 W converter with load as well as line voltage variation are given to verify theory. The proposed converter employs a zero-voltage transition (ZVT) network to ensure zero-voltage switching (ZVS) at all loads, and natural power factor correction is ensured using a simple control circuit.  相似文献   

8.
This paper presents an analysis and experimental results for a frequency-controlled series-resonant dc-dc converter that consists of a Class-D zero-voltage-switching (ZVS) series-resonant inverter and a center-tapped synchronous rectifier. If the dc output voltage is low, the efficiency of the converter is dominated by the efficiency of the rectifier. Low on-resistance metal-oxide-semiconductor field-effect transistors (MOSFETs) are used in the rectifier instead of diodes because the forward voltage drop across the rectifying device is low, resulting in a high efficiency. The dc output voltage is regulated against variations in the load resistance and the dc input voltage by varying the operating frequency. Experimental results are presented for a converter with a dc input voltage of 150 V, an output voltage of 5 V, and a dc load resistance ranging from 0.5 to 5.5 R. The measured efficiency was 86% for a 50 W output and 89% for a 25 W output. The theoretical results were in good agreement with the measured results.  相似文献   

9.
Earlier references have described a new soft switched ZVS/ZCS (zero voltage switching, zero current switching) converter for IGBTs that allows operation above 20 kHz. Although frequencies above 20 kHz are now possible for IGBT converters, the optimum frequency for minimum volume may be below 20 kHz because of heat sink requirements. A comparative study considers the reactive component versus heat sink volume tradeoff for two 6 kW converters, one using ZVS/ZCS and the other using a more conventional circuit with hard switching  相似文献   

10.
An efficient and practical method for steady-state design of an LLC-type parallel resonant dc/dc converter (LLC-PRC) is presented. In general, the output characteristic curves of LLC-PRC can be obtained by multiplying the output curves of the LC-type parallel resonant converter (LC-PRC) by a ratio of the parallel and series inductances. The peak voltage and current stresses on the resonant elements also depend on the same ratio. The LLC-PRC with a filter inductor is examined for two conduction modes, continuous and discontinuous capacitor voltage conduction modes, to show the effect of the inductance ratio. A means to use the derived equations to obtain the zero current switching (ZCS) is given. Also, a design procedure, along with design examples, is given to illustrate the use of the equations and characteristic curves. An experimental LLC-PRC is built to ensure the validity of the equations and design examples  相似文献   

11.
A technique is developed for predicting the closed-loop steady state output voltage regulation of a multiple-output current-mode controlled converter. The proposed model accounts for the current loop, the voltage loop, and the integrator in the compensation scheme. This method allows tradeoffs with respect to regulation between different components or feedback configurations to be evaluated during the design of a converter. Experimental verification on a three-output current-mode controlled push-pull converter with single output voltage feedback is provided  相似文献   

12.
Six modes of operation for the push-pull 4c-to-dc converter are presented by taking into account the magnetizing current of the transformer. If the inductance of the transformer is decreased, the region where the output voltage is abnormally high is expanded in the load characteristics.  相似文献   

13.
提出一种新型有源软开关技术,在辅助开关和谐振电路的作用下,可以实现开关电源中开关管的零电压开通和零电压关断,而且可以减小开关管的电压应力和电流应力。对电路工作原理和参数设置进行了分析,给出了关键参数的选取原则。利用实际电路,验证了有源软开关技术的有效性。  相似文献   

14.
与传统的Buck电路相比,基于H桥并联的DC/DC变换器可以实现电压的双极性输出和故障时的冗余控制,非常适合用于大功率电动机正反转控制的场合。分析了并联H桥型DC/DC变换器的结构组成和双脉宽调制(PWM)模式。为了降低双脉宽调制下H桥型DC/DC变换器的开通和关断损耗,对无源软开关技术进行了分析,重点探讨了RCD缓冲电路和最小应力缓冲电路之间的性能差异,指出最小应力软开关技术可以获得更好的软开关性能,并就将其用于双脉宽调制下的并联H桥DC/DC变换器进行了仿真研究。仿真结果表明:最小应力软开关技术用于双脉宽调制下并联H桥DC/DC变换器时,可以实现开关管的零电压开通和零电流关断。  相似文献   

15.
A new dc-dc converter featuring a steep step-down of the input voltage is presented. It answers a typical need for on-board aeronautics modern power architectures: power supplies with a large conversion ratio able to deliver an output voltage of 1–1.2 V. The proposed structure is derived from a switched-capacitor circuit integrated with a buck converter; they share the same active switch. The proposed solution removes the electromagnetic interference (EMI) emission due to the large di/dt in the input current of the switched-capacitor power supplies. Compared with a quadratic buck converter, it presents a similar complexity, a smaller reduction in the line voltage at full load (but less conduction losses due to smaller input inductor current and capacitor voltage), lower voltage stresses on the transistor and diodes, lower current stresses in the diodes, and smaller size inductors. A similar structure using a buck-boost converter as the second stage is also presented. The experimental results confirm the theoretical developments.  相似文献   

16.
The analysis of resonant converters including the capacitance of the switches is presented. New dc characteristics are obtained for the series, parallel, and series-parallel resonant converters (SPRC). The operating regions where the converters operate with zero-voltage switching (ZVS) are determined as a function of the switch capacitance. The more pronounced effect can be seen in the series resonant converter (SRC), while the parallel resonant converter (PRC) is the most insensitive. The results of the analysis have been verified on an experimental prototype  相似文献   

17.
The Fourier theory of jumps (FTJ) is demonstrated as an aid in deriving closed-form analytical equations for converter switching harmonics. The switching waveforms analyzed are the input current and output voltage and current of a three-phase, ac-dc, step-down, dead-band pulsewidth modulated (PWM), unity power factor converter. The input current closed-form harmonic equation is derived for two parallel-connected, interleaved-PWM converters supplying the same load and sharing a common input filter. The equations are compared with PSpiceTM simulations and practical results  相似文献   

18.
The distributed power systems of future commercial aircraft will adopt variable frequency generation (360 to 800 Hz). Front-end converters in the system will be required to have a high efficiency and a low total harmonic distortion (THD) of the input current. This paper explains the design of a zero-voltage-switching (ZVS) active-clamped isolated low-harmonic SEPIC rectifier for such applications. Utilization of the transformer leakage inductance for ZVS and a single-layer transformer design contribute to a high efficiency. An accurate averaged switch model has been developed, which shows that the control-to-input-current transfer function of this converter does not exhibit resonances observed in the conventional SEPIC. As a result, for closed-loop operation using average current control, damping of the coupling capacitor is not required. Operating at a switching frequency of 200 kHz, an experimental 100 W, 28 V output rectifier achieves a THD of 3-4% and efficiency exceeding 90% over the entire line frequency range.  相似文献   

19.
The performance of the half-bridge (HB) zero-current-switched (ZCS) quasi-resonant converter (QRC) and zero-voltage-switched (ZVS) multiresonant converter (MRC) is compared with respect to their efficiency, input voltage range, semiconductor stresses, power density, and reliability. The efficiency of the HB ZVS-MRC at a given nominal input is shown to be highly dependent on the range of the input voltage, and it suffers when the converter has to be designed to cover a wide range. However, this is not the case for the HB ZCS-QRC. Experimental versions of the HB ZCS-QRC and HB ZVS-MRC were designed for the input voltage range from 150 to 350 V and a maximum output power of 100 W, under the same constraints, to facilitate their comparison  相似文献   

20.
The series resonant converter is analyzed in steady state, and for constant switching frequency the output current and voltage characteristics are found to be ellipses. The converter operating point can then be easily obtained by superimposing a load line on these elliptical characteristics. Peak resonant capacitor voltage and inductor current are also plotted in the output plane and are dependent to first order only on output current. When peak voltage and current are plotted in this manner, the dependence of component stresses on operating point is clearly revealed. The output characteristics are modified to include the effect of transistor and diode voltage drops, and experimental verification is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号