首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite several decades of research and refinement in cost estimating tools and practices, the final cost of US space programs continues to exceed initial cost estimates by an average of more than 45%. Thus, program cost models not only exhibit error, they are seriously biased. A structured review surveyed techniques, approaches, models and conceptual tools related to space program cost estimating, to understand cost in complex space systems. Analysis shows problems of cost estimating result from the growing complexity of space programs, failures in managing growth, and mission failures. Although there is greater expectation for the models to accurately predict program costs, the current models used for seeking funding for large space programs are inadequate due to (1) inability to predict future, (2) lack of insight, and (3) process replaces judgment in decision making.  相似文献   

2.
Miller RH 《Acta Astronautica》1995,36(8-12):581-587
Human productivity during assembly operations in-orbit is dependent on limits set by fatigue, metabolic rates, learning, and assembly techniques. In order to quantify these effects, tests were conducted in the NASA MSFC Neutral Buoyancy Simulator, in the NASA KC-135 in parabolic flight, and in space with the EASE program during the Shuttle Atlantis mission 61-B. A separate program attempted to relate productivity to system costs. Because of the surprisingly high productivity which had been demonstrated in orbit, it was shown that assembly operations would have only a small effect on system costs at the present level of launch costs. The results of these continuing studies have been reported in a recent paper(1). They will be briefly summarized here and the results updated to include additional cost elements and to examine the effects of reductions in transportation costs, resulting from advances in technology and from increased demand, on system costs. It is shown that, as launch costs are reduced, the assembly costs could become an increasingly important component of the total system costs.  相似文献   

3.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

4.
《Acta Astronautica》2008,62(11-12):1076-1084
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

5.
Over the past fifteen years, major U.S. initiatives for the development of new launch vehicles have been remarkably unsuccessful. The list is long: NLI, SLI, and X-33, not to mention several cancelled programs aimed at high speed airplanes (NASP, HSCT) which would share some similar technological problems.The economic aspects of these programs are equally as important to their success as are the technical aspects. In fact, by largely ignoring economic realities in the decisions to undertake these programs and in subsequent management decisions, space agencies (and their commercial partners) have inadvertently contributed to the eventual demise of these efforts.The transportation revolution that was envisaged by the promises of these programs has never occurred. Access to space is still very expensive; reliability of launch vehicles has remained constant over the years; and market demand has been relatively low, volatile and slow to develop. The changing international context of the industry (launching overcapacity, etc.) has also worked against the investment in new vehicles in the U.S. Today, unless there are unforeseen technical breakthroughs, orbital space access is likely to continue as it has been with high costs and market stagnation.Space exploration will require significant launching capabilities. The details of the future needs are not yet well defined. But, the question of the launch costs, the overall demand for vehicles, and the size and type of role that NASA will play in the overall launch market is likely to influence the industry. This paper will emphasize the lessons learned from the economic and management perspective from past launch programs, analyze the issues behind the demand for launches, and project the challenges that NASA will face as only one new customer in a very complex market situation. It will be important for NASA to make launch vehicle decisions based as much on economic considerations as it does on solving new technical challenges.  相似文献   

6.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

7.
As economic pressure and competition for budget among federal agencies has increased, there has been an increasing need for more granular data and robust management information systems. This is especially true for the execution of major civilian space programs. This need has resulted in new program management requirements being implemented in an attempt to limit cost and schedule growth. In particular, NASA Procedural Requirements (NPR) 7120.5D requires the implementation of an Earned Value Management System (EVMS) compliant with the requirements of American National Standards Institute (ANSI)/Electronic Industries Alliance Standard 748-B. The Radiation Belt Storm Probes (RBSP) program management team at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) made a decision to implement an EVMS on RBSP during Phase B—a year earlier than specified in the contractual Phase C reporting requirement as defined in the NPR. This decision was made so that the project would have the benefit of 12 months of training and hands-on implementation during Phase B. Although there were a number of technical and process hurdles encountered during Phase B and into Phase C, the system was working well when the Integrated Baseline Review (IBR) was held in August 2009. The IBR was a success because it met the review requirements. It was also clear to all IBR participants that the EVMS was providing value to the project management team. Although the IBR pointed out some areas of concern regarding process and ANSI compliance, the system had markedly improved the project's ability to monitor cost and schedule. This, in turn, allowed the project team to foresee problems in advance, formulate corrective actions, and implement course corrections without causing significant adverse impact to the project. Opponents of EVMS systems often communicate the unfavorable opinion that EVMS systems create unnecessary cost and administration. Although it is undeniable that EVMS implementation does not occur without cost, the cost is minimal in comparison to the benefits of successful implementation. This paper will focus on the implementation of EVMS on the RBSP project, explain EV processes and the implementation's cost, and analyze the benefits of EVMS to provide insight into cost/benefit considerations for other projects considering EVMS implementation. This paper will do this by focusing on the following points: (1) RBSP is the first full-up implementation of earned value management (EVM) at JHU/APL; (2) RBSP EVM started in Phase B; (3) RBSP EVM implementation has been working well in Phase C/D; (4) RBSP EVM implementation has been recognized by Goddard Space Flight Center and NASA Headquarters as successful; and (5) an assessment of the benefits of EVMS to the project management team and sponsor shows that the system's benefits outweigh the cost of implementation.  相似文献   

8.
Lifting the veil on CORONA   总被引:1,自引:0,他引:1  
Albert D. Wheelon   《Space Policy》1995,11(4):249-260
Information on some of the USA's military space reconnaisance programs has recently been declassified, allowing details of the nature of the technology used and its capabilities to be publicly aired. In this article, a personal account of the situation leading up to the creation of the USA's first military satellite system — named CORONA — is provided, along with discussion of its design, development and program management. CORONA's enormous impact on intelligence gathering is assessed; lessons learned from the program are presented.  相似文献   

9.
Since the beginning of the Space Age the public was fascinated by the great challenges that needed to be overcome, but also inspired by the potential benefits that might arise from the utilization of space systems. This lecture examines the major technological breakthroughs that were necessary for many of the key space programs to succeed, and postulates the immediate and future benefits to humanity that became evident as a result of these advances. A dozen programs ranging from Sputnik and Apollo to the Global Navigation Satellite System are reviewed in view of the technical challenges in elements such as propulsion, power, structures, computing, guidance and control, spectrum management and payloads. Challenges in the cost of space launch, large structures, debris mitigation, humans in space and commercial promise are discussed and opportunities for improvements in the future are postulated.  相似文献   

10.
Informed maintenance for next generation reusable launch systems   总被引:1,自引:0,他引:1  
Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives - maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance.The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software.This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2nd Generation Reusable Launch Vehicle Program.  相似文献   

11.
《Acta Astronautica》1986,13(9):527-536
The planned construction of a permanently manned space station in low earth orbit has reopened the discussion about the establishment of a manned lunar base within the next 25 years for exploration of the Moon and space. Several studies demonstrate that a lunar base very modest in size may cost $50 to 90 billion spread over 25 years which would fit into the expected NASA budget for this period. Having these cost in mind the authors present a concept having a greater effectiveness based on the following operational characteristics: (1) The development of a low cost heavy-lift launch vehicle for cargo transportation and propellant supply reduces the specific transportation cost by one order of magnitude compared to the existing Space Shuttle system. (2) Orbital transfer vehicles with LOX/LH2 technology should be preferred over advanced propulsion systems because of proved technology and cost reduction by utilization of lunar produced LOX. (3) The evolution of the lunar base towards a lunar colony and manufacturing facility could only be initiated by a powerful transportation system allowing for cost-effective space construction projects and manned spaceflight to other planets.The lunar base program of this paper is based on a schedule considering a 8 years development, 5 years lunar base assembly and 20 years operational phase during which the lunar crew will increase from 60 to 180 people. Launch rates will be 10 shuttle launches and 10 HLLV launches p.a. at the average. Development costs of the transportation and lunar base system will amount to $29 billion. Adding hardware and operational costs for lunar base assembly results in the acquisition cost of $49 billion. Total life cycle costs are estimated to be in the order of $101 billion considering a 20 years operational phase which will cost $2.6 billion p.a. at the average. For the 2508 man-years spent in lunosphere the relative cost will be $40.2 million per man-year of which space transportation will cost $25.0 million per man-year.  相似文献   

12.
Korea’s space development program was created almost 40 years behind those of the advanced countries but it has nevertheless made remarkable progress. Korean space development has been focused on technology catch-up, where commercialization and growth of industrial competitiveness are important rationales. However, the program has several problems, including: lack of a space equipment manufacturing industry, total system companies in the space manufacturing industry and communication between industry and researchers, and much concentration of projects and initiatives in the Korean Aerospace Research Institute (KARI). This study analyzes the problem by comparing space agencies and programs in Korea and other countries, particularly Japan and the USA. It is shown that the role of a national laboratory is critical in space industry development and argued that KARI should make greater efforts to promote the Korean space industry by encouraging technology transfer, sharing equipment and communication between companies. For successful space development, the main organization – usually the national research institute – should change its role from a research-only laboratory to manager and supporter of space development and industry. Such a move would invigorate Korea’s space industry and allow it to catch up with countries with a similar environment.  相似文献   

13.
First order evaluations for active shielding based on superconducting magnetic lenses were made in the past in ESA supported studies. The present increasing interest of permanent space complexes, to be considered in the far future as ‘bases’ rather than ‘stations’, located in ‘deep’ space (as it has been proposed for the L1 libration’s point between Earth and Moon, or for Stations in orbit around Mars), requires that this preliminary activity continues, envisaging the problem of the protection from cosmic ray (CR) action at a scale allowing long permanence in ‘deep’ space, not only for a relatively small number of dedicated astronauts but also to citizens conducting there ‘normal’ activities.Part of the personnel of such a ‘deep space base’ should stay and work there for a long period of time. It is proposed that the activities and life of these personnel will be concentrated in a sector protected from Galactic CR (GCR) during the whole duration of their mission. In the exceptional case of an intense flux of Solar Energetic Protons (SEP), this sector could be of use as a shelter for all the other personnel normally located in other sectors of the Space Base.The realization of the magnetic protection of the long permanence sector by well-established current materials and techniques is in principle possible, but not workable in practice for the huge required mass of the superconductor, the too low operating temperature (10–15 K) and the corresponding required cooling power and thermal shielding.However the fast progress in the production of reliable High Temperature Superconducting (HTS) or MgB2 cables and of cryocoolers suitable for space operation opens the perspective of practicable solutions. In fact these cables, when used at relatively low temperature, but in any case higher than for NbTi and Nb3Sn, show a thermodynamically much better behavior. Quantitative evaluations for the protection of the sector of the ‘Space Base’ to be protected from GCRs (and therefore from SEPs also) are presented.For possible large outer radius solutions it must in the meantime solve the problem of the assembling or deploying in space the conductors for returning the electric current.  相似文献   

14.
The paper describes the basic definition and application of 'Cost Engineering' which means to design a vehicle system for minimum development cost and/or for minimum operations cost. This is important now and for the future since space transportation has become primarily a commercial business in contrast to the past where it has been mainly a subject of military power and national prestige. Several examples are presented for minimum-cost space launch vehicle configurations, such as increasing vehicle size and/or the use of less efficient rocket engines in order to reduce development and operations cost. Further a cost comparison is presented on single-stage (SSTO)-vehicles vs. two-stage launchers which shows that SSTOs have lower development and operations cost although they are larger, respectively have a higher lift-off mass than two-stage vehicles with the same performance. The design of a space tourism-dedicated launch vehicle is an extreme challenge for a cost-engineered vehicle design in order to achieve cost per seat not higher than $50,000. Finally an outlook is presented on the different options for manned Earth-to-Moon transportation modes and vehicles – another most important application of 'cost engineering', taking into account the large cost of such a future venture.  相似文献   

15.
碘工质电推进储供系统设计及实验   总被引:1,自引:0,他引:1       下载免费PDF全文
霍尔推力器越来越多地用于空间电推进,由于高纯度氙气获取难度大、成本高昂,故需要寻找其他种类的工质代替氙气用于空间推进。碘的升华温度较低,且常温储存时为固态,作为推力剂具有减小系统体积、降低成本等优势,但是适配的储供系统尚不成熟。通过比较碘和其他工质的相关特性,阐明碘作为空间电推进工质的优势,总结了国内外相关实验,说明使用碘作为推进剂的可行性,设计新型热辐射加热储罐,完成了碘工质储供系统的初步实验,对系统设计进行规划。实验结果表明:热辐射加热储罐相比于传统外部加热储罐具有更好的调节性能。  相似文献   

16.
Within the space program of the Federal Republic of Germany the microgravity program in connection with the utilization of SPACELAB constitutes a central task which determines the long-term program concepts and also their relation to German participation in future ESA programs.The scientific preparatory programs under way for some years now have made further progress. Extensive flight experience and valuable scientific results were obtained on the basis of successful rocket pre-programs. The present paper describes the process in which scientific and organisational priorities are being defined for the planning and execution of the experimental programs.In order to obtain a sufficient number of flight opportunities, payloads for SPACE SHUTTLE missions, in particular under the NASA GAS Program, as well as experimental equipment such as the materials laboratory (MSDR) for FSLP are being developed. The German program focuses on preparing a German SPACELAB mission D1 planned for 1985, which is intended to verify the applicability and efficiency of manned research laboratories for industry and the scientific community. A second emphasis is on preparing the use of SHUTTLE-supported re-usable space platforms.  相似文献   

17.
Using economic incentives to control costs is a new concept for space missions. The basic tenets of market-based approaches run counter to typical centralized management techniques often utilized for complex space missions. NASA's Cassini mission to Saturn used a market trading system to assist the Science Instrument Manager in guiding the development of the spacecraft's science payload. This system allowed science instrument teams to trade resources among themselves to best manage their resources (mass, power, data rate, and budget). Thus, Cassini Project management was no longer responsible for adjudicating and reallocating resources that result from instrument development problems. Instrument teams were responsible for directly managing their resources and if they ran into a development problem it was their responsibility to resolve their problem by descoping or through the use of a 'resource exchange.' Under the trading system, instrument cost growth was less than 1% and the total payload mass was under its allocation by 7%. This result is in stark contrast to the 50%–100% increases in these resources on past missions.  相似文献   

18.
俄罗斯空间站推进剂补加程序分析   总被引:5,自引:0,他引:5  
江铭伟 《火箭推进》2013,39(4):8-12
补加程序是推进剂补加系统的关键技术之一,而目前也仅有俄罗斯有成功应用的经验.根据目前获取的资料,经过计算、仿真和论证,对俄罗斯空间站的补加系统进行了研究,分析了ATV对空间站进行推进剂补加的程序,初步得到了俄罗斯空间站推进剂补加的特点,可作为目前我国空间站方案论证期间补加程序的参考.  相似文献   

19.
美国作战及时响应空间计划及其技术发展预测   总被引:1,自引:0,他引:1  
美国的作战及时响应空间(ORS)计划是为战术应用而建立的,目的是发展低成本、灵活性的快速响应能力,也就是说,把各军种的战术卫星和近空间系统(及时响应有效载荷)与航天发射系统及航天发射场四个系统作为一个ORS整体或一个综合系统。美国目前正在逐步完善其ORS系统,并全面推进。简要讲述了ORS的作战原理及特点,分析了当前的ORS的几个计划,提出了2025年ORS计划的技术预测。  相似文献   

20.
Space mission implementation faces a very dynamic environment with fast-paced information technology advancement and shrinking space budgets. A more focused use of decreasing public investments in space requires a cost reduction over their entire life cycle, up to the end of the useful life of a spacecraft. The anticipation of cost, schedule, risk and performance requirements from all over the product life cycle to the early stages of product development is generally recognised as a necessary condition to reduce life cycle cost. In order to cope with the intrinsic functional complexity of space products, such requirements engineering activity must be performed in a structured way within a systems engineering approach. This paper aims to describe how Cradle, a commercial systems engineering environment software package, can be used for integrated satellite development, taking into consideration functional and life cycle process requirements. Cradle has requirements management, system modelling, performance modelling, configuration management and document generation capabilities integrated in the same environment. Also, the paper provides some examples of application and highlights how Cradle can enhance the satellite development related activities performed by the Brazilian Institute for Space Research (INPE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号