首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some periods in the sunspot number reconstruction composed by Hoyt and Schatten [Hoyt, D.V., Schatten, K.H. Group Sunspot Numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219, 1998. Reprinted with figures in Sol. Phys. 181, 491–512, 1998], are based on very few records. For example, there are only a few solar observations during the years 1736–1739. In this paper we intend to improve the reliability of the sunspot numbers reconstruction developed by Hoyt and Schatten for this 4-years period based on information about solar activity published in three journals of that epoch: “Philosophical Transactions”, “Histoire de l’Académie Royale des Sciences”, and “Nova Acta Eruditorum”. We were able to identify 42 papers with solar observations, including 30 with relevant information on sunspots. Based upon this new outlook, a reconstruction of the monthly solar activity for these years is proposed.  相似文献   

2.
Daily Be-7 concentrations in air at the height of 15 m are continuously observed at 38°15.2′N, 140°20.9′E, between 2000 and 2001. The average concentration and the relative standard deviation were 4.0 mBq/m3 and 50% in 2000–2001, respectively. The Be-7 concentrations increased 2.5% with the decrease in the sunspot numbers by 6.7% for the term of two years. From the power spectral analysis, the periodicity of 26 days is shown for the daily Be-7 concentrations. The folding analysis indicates that the time variation of the Be-7 concentration is similar to that of the ground-based neutron counting rate, and the phase delay for the minimum portion of Be-7 concentration was roughly 8 days to the maximum sunspot number. These results indicate that the Be-7 concentrations in the air at ground level have 26 day periodicity as a component of time variations and the time variation is caused by the solar modulation of galactic cosmic rays, which corresponds to the variation of the sunspot number due to the rotation of the sun.  相似文献   

3.
A new method of nonlinear spectral analysis (called the method of global minimum: MGM), based on the best presentation (in sense of minimal squares) of a given time data set as a sum of sinusoids whose frequencies, amplitudes and phases are to be determined, has been used to find periodicities in annual Wolf sunspot numbers (W) during the period 1700–1995. The possible future behaviour of the 11-year solar cycle (based on an extrapolation of the calculated model) is also presented. The main characteristics of the 23rd solar cycle are as follows: the W maximum occurs about 2004, with a peak of nearly 220. An unusually large value of W will occur during the 23rd cycle, which should be characterised by the longest maximum, specifically, W will be greater than 100 during the 11-year period from 1997 to 2007. The first sharp rise will occur during the period 1996–1998, the second sharp during 2002–2004. The main features of the 24 year cycle are as follows: the next minimum in W, associated with the 24th solar cycle, should occur in the year 2008 and the maximum in 2014. W is expected to peak at about 180. The minimum value for the 25th year cycle is expected to occur in the year 2019. It is shown that the accuracy of these predictions depends, first of all, on the extrapolation of the hyperlong harmonic of the calculated polyharmonic model fit of observed annual sunspot numbers during the period 1700–1995. The error bars in the definition of the maximum and minimum epochs can be as large as two years.  相似文献   

4.
We have used the Lempel–Ziv measure to describe the complexity in sunspot activity during the solar cycles 18–23. In particular, we examined the time series of daily sunspot numbers in the northern and southern hemispheres in each of the six cycles and calculated the Lempel–Ziv complexity (LZC) value for each time series. Our results indicate that in the even cycles, the LZC values of the sunspot numbers in the two hemispheres are very close to each other, whereas in the odd cycles they differ significantly between the two hemispheres. We also find that within each hemisphere the LZC varies from cycle to cycle. This even–odd cycle parity reflects the variations in inter-hemispheric strengths of the solar magnetic field leading to different temporal distributions of sunspots in the two hemispheres. The degree of complexity may influence the predictability of sunspot activity in the two hemispheres during the various cycles. Although the physical implication of the results is not clear, these results may stimulate new ideas into modeling the complex dynamics of the solar dynamo.  相似文献   

5.
第23至24太阳活动周(1997-2016年)期间太阳质子事件的强度统计分析表明,1997-2016年期间总共发生了128个太阳质子事件,其中峰值通量范围为10~99pfu,100~999pfu,1000~2999pfu及>3000pfu的事件分别占55.15%,27.94%,9.56%,7.35%.太阳质子事件的不对称性分析表明,不同强度太阳质子事件东西不对称性的程度不相同,其中1000~2999pfu事件的不对称性最强,而3000pfu以上事件的不对称性最弱.第23周期间,太阳质子事件主要发生在太阳活动周两个峰值之间和最大峰值之后的时段,而第24周太阳质子事件主要发生在太阳活动周最大峰值之前.   相似文献   

6.
依据实际观测的中等磁暴数据,统计分析了中等磁暴的太阳周分布.分析结果表明,在一个太阳活动周内,每年中等磁暴随时间的变化出现多个峰值,其中,最大峰值均出现在太阳活动周的下降段,即中等磁暴的峰值比太阳黑子数平滑年均值的峰值要滞后,滞后的时间为2~3年.超过70%的中等磁暴出现在太阳活动周的下降段,这表明绝大多数中等磁暴出现在太阳活动周的下降段.通过对中等磁暴平滑月均值与太阳黑子数平滑月均值相位差的计算分析发现,中等磁暴峰值出现的时间比太阳黑子数峰值出现的时间要滞后,不同太阳活动周中等磁暴峰值出现的时间与太阳黑子数峰值时间滞后的程度不同.   相似文献   

7.
The high-speed plasma streams in the solar wind are investigated during the solar cycles nos. 20–22 (1964–1996), separately on the two types of streams according to their solar origin: the HSPS produced by coronal holes (co-rotating) and the flare-generated, in keeping with the classification made in different catalogues. The analysis is performed taking into account the following high-speed stream parameters: the durations (in days), the maximum velocities, the velocity gradients and, the importance of the streams. The time variation of these parameters and the high-speed plasma streams occurrence rate show an 11-year periodicity with some differences between the solar cycles considered. A detailed analysis of the high-speed stream 11-year cycles is made by comparison with the “standard” cycles of the sunspot relative number (Wolf number). The different behaviour of the high-speed stream parameters between even and odd solar cycles could be due to the 22-year solar magnetic cycle. The increased activity of the high-speed plasma streams on the descendant phases of the cycles, regardless of their solar sources, proves the existence of some special local conditions of the solar plasma and the magnetic field on a large scale that allow the ejection of the high energy plasma streams. This fact has led us to the analysis the stream parameters during the different phases of the solar cycles (minimum, ascendant, maximum and, descendant) as well as during the polar magnetic field reversal intervals. The differences between the phases considered are pointed out. The solar cycles 20 and 22 reveal very similar dynamics of the flare-generated and also co-rotating stream parameters during the maximum, descendant and reversal intervals. This fact could be due to their position in a Hale Cycle (the first component of the 22-year solar magnetic cycle). The 21st solar cycle dominance of all co-rotating stream parameters against the 20th and 22nd solar cycle ones, during almost all phases, could be due to the same structure of a Hale Cycle – solar cycle 21 is the second component in a 22-year SC. During the reversal intervals, all high-speed stream parameters have comparable values with the ones of the maximum phases of the cycles even if this interval contains a small part of the descendant branch (solar cycles 20 and 22).  相似文献   

8.
Reported heliospheric current-sheet displacements from the equatorial plane have been found to be in agreement with north-south asymmetries of the solar magnetic field. Mean heliospheric sector width estimations in the period 1947–1977 have shown that the heliospheric current sheet demonstrates an asymmetric placement with respect to the solar equator. This asymmetry is very prominent in the epochs of the solar cycle minima while it almost disappears in the epochs of maxima. At the same time, the sums of the maxima values of the sunspot magnetic field intensity showed in the epochs of minimum a characteristic asymmetry which implies an essential conjunction among the heliospheric current sheet, the solar cycle and the solar magnetic field. The main conclusion which could be derived of these observations is that the heliospheric current sheet has its origin on the solar surface while its location with respect to the solar equator appears to be affected by the variability of the lower layers of the solar interior.  相似文献   

9.
Statistical properties of the daily averaged values of the solar activity (sunspot numbers, total solar irradiance and 10.7 cm radio emission indices), the solar wind plasma and the interplanetary magnetic field parameters near the Earth’s orbit are investigated for a period from 1964 to 2002 covering the maxima of four solar cycles from 20th to 23rd. Running half-year averages show significant solar cycle variations in the solar activity indices but only marginal and insignificant changes in comparison with background fluctuations for heliospheric bulk plasma and magnetic field parameters. The current 23rd cycle maximum is weaker than 21st and 22nd maxima, but slightly stronger than 20th cycle in most of solar and heliospheric manifestations.  相似文献   

10.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

11.
We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf’s numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946–1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44?years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44?years.  相似文献   

12.
The solar dipole moment at activity minimum is a good predictor of the strength of the subsequent solar cycle. Through a systematic analysis using a state-of-the-art 2×2D solar dynamo model, we found that bipolar magnetic regions (BMR) with atypical characteristics can modify the strength of the next cycle via their impact on the buildup of the dipole moment as a sunspot cycle unfolds. In addition to summarizing these results, we present further effects of such “rogue” BMRs. These have the ability to generate hemispheric asymmetry in the subsequent sunspot cycle, since they modify the polar cap flux asymmetry of the ongoing cycle. We found strong correlation between the polar cap flux asymmetry of cycle i and the total pseudo sunspot number asymmetry of cycle i+1. Good correlation also appears in the case of the time lag of the hemispheres of cycle i+1.  相似文献   

13.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   

14.
太阳黑子的分维数及其可预报性   总被引:1,自引:0,他引:1  
本文利用1932年至1982年的逐日国际太阳黑子相对数的9日平均时间序列来分析太阳黑子演变的动力学特性,发现太阳黑子是至少需要七个独立变量来描述的复杂动力系统,其关联维数为6.3±0.1,二阶Renyi熵和最大Lyapunov指数分别为(0.37±0.02)bit/yr和(0.34±0.01)bit/yr,它们表征的可预报时间尺度,即初始误差增长一倍所需的时间分别为(2.7±0.2)年和(2.9±0.l)年。   相似文献   

15.
用BP神经网络预报太阳活动第23周的黑子数   总被引:3,自引:2,他引:1  
本文设计、训练和利用BP神经网络,对1750年以来的各太阳活动周上升段和下降段太阳黑子数的变化数据进行了分类和模式识别,得到各太阳活动周上升周期及其上升期间太阳黑子数平滑月均值相当好的模拟结果;在此基础上获得较好的太阳活动第22周上升周期及太阳黑子数的最大平滑月均值预报结果;还作出太阳活动第23周的上升周期及太阳黑子数的最大平滑月均值的预报结果.   相似文献   

16.
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs.  相似文献   

17.
The heat transfer in a regolith subsurface layer of thickness 20 m has been theoretically simulated for the areas near Mercury's north pole aiming at the clarification of the possible existence of subsurface ice formations of different form. The paper considers different models of the icy regolith structure and composition: pure uniform amorphous ice; a porous dispersive system with ice-filled pores and voids; permafrost. For comparison the heat transfer in dry iceless regolith has been considered as well. It has been shown that the line of maximum distribution of subsurface icy formations depends on the icy regolith model, but for any one in the “hot” regions it does not go below 70°. For the “cool” regions this line has been shown to go from 5° to 10° southward than that for the “hot” ones. The possible thickness of icy regolith near the pole has been estimated for different models assuming an interior heat flow of 15 mW m−2. It has been shown that the maximum thickness of this layer takes place at the pole and is equal to 10 km for any model.  相似文献   

18.
统计分析了1996-2008年期间CME数量随角宽的分布, 将几个典型角宽的CME数量随时间变化的特征与太阳黑子数随时间变化特征进行比较. 分析结果表明, 角宽为0°~ 180°的CME占CME总数的95%以上, 全晕CME占2.83%, 角宽301°~ 359°的CME数量非常少. 角宽0° ~ 60°的CME有三个峰值, 与太阳黑子数随时间变化的特征不吻合. 角宽为121°~ 180°CME的数量无双峰分布. 全晕CME的分布具有明显的双峰结构, 第一个峰值出现在2001年, 第二个峰值出现在2005年, 与太阳黑子数的变化不同步.   相似文献   

19.
This study presents the time variations of the total electron content in the South East Asian equatorial ionization anomaly. The time variation of the TEC is analyzed through the period 2006–2011 by using a latitudinal chain of GPS stations extending in the northern and southern hemisphere. The data shows that the shape of the diurnal variation of the TEC depends on the latitude: a plateau is observed at the stations near the equator and a Gaussian at the station distant from the equator. We observe a semiannual pattern in all the stations with maxima at equinox. In both hemispheres, the amplitude of the crest is larger in spring than autumn from 2006 to 2008 and smaller in spring than in autumn from 2009 to 2011. We also observe an asymmetry between the amplitude and the position of the two crests of ionization. There is a very high level of correlation between the amplitude of the TEC at the two crests and the sunspot number: ∼0.88. During the deep solar minimum 2008–2009, the amplitude of crests of ionization becomes small during several months in summer and winter. The results show that both crests move significantly equatorward in winter than other seasons and there is a tendency for both crests to appear earlier in winter and later in summer.  相似文献   

20.
The “Vega” Soviet flyby probes to comet Halley will carry a French infrared sounder, called “I.K.S.”. In order to assess its observing capabilities, a theoretical model of the comet infrared emission was constructed. We show how the experiment results will be used to derive the nucleus size and radiative properties, and to study the distribution of gas and dust in the inner coma and circumnuclear area. A preliminary discussion is made of the relevance of the data in instances where the cometary phenomena would be more complex than assumed in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号