首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Observations and measurements in the solar wind, the Jovian atmosphere and the gases trapped in lunar surface material provide the main evidence from which the isotopic composition of H, He and Ne in the Protosolar Cloud (PSC) is derived. These measurements and observations are reviewed and the corrections are discussed that are needed for obtaining from them the PSC isotopic ratios. The D/H, 3He/4He (D+3He)/H, 20Ne/22Ne and 21Ne/22Ne ratios adopted for the PSC are presented. Protosolar abundances provide the basis for the interpretation of isotopic ratios measured in the various solar system objects. In this article we discuss constraints derived from the PSC abundances on solar mixing, the origin of atmospheric neon, and the nature of the “SEP” component of neon trapped at the lunar surface. We also discuss constraints on the galactic evolution provided by the isotopic abundances of H and He in the PSC. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The solar wind charge state and elemental compositions have been measured with the Solar Wind Ion Composition Spectrometers (SWICS) on Ulysses and ACE for a combined period of about 25 years. This most extensive data set includes all varieties of solar wind flows and extends over more than one solar cycle. With SWICS the abundances of all charge states of He, C, N, O, Ne, Mg, Si, S, Ar and Fe can be reliably determined (when averaged over sufficiently long time periods) under any solar wind flow conditions. Here we report on results of our detailed analysis of the elemental composition and ionization states of the most unbiased solar wind from the polar coronal holes during solar minimum in 1994–1996, which includes new values for the abundance S, Ca and Ar and a more accurate determination of the 20Ne abundance. We find that in the solar minimum polar coronal hole solar wind the average freezing-in temperature is ∼1.1×106 K, increasing slightly with the mass of the ion. Using an extrapolation method we derive photospheric abundances from solar wind composition measurements. We suggest that our solar-wind-derived values should be used for the photospheric ratios of Ne/Fe=1.26±0.28 and Ar/Fe=0.030±0.007.  相似文献   

3.
The Sun is the largest reservoir of matter in the solar system, which formed 4.6 Gyr ago from the protosolar nebula. Data from space missions and theoretical models indicate that the solar wind carries a nearly unfractionated sample of heavy isotopes at energies of about 1 keV/amu from the Sun into interplanetary space. In anticipation of results from the Genesis mission’s solar-wind implanted samples, we revisit solar wind isotopic abundance data from the high-resolution CELIAS/MTOF spectrometer on board SOHO. In particular, we evaluate the isotopic abundance ratios 15N/14N, 17O/16O, and 18O/16O in the solar wind, which are reference values for isotopic fractionation processes during the formation of terrestrial planets as well as for the Galactic chemical evolution. We also give isotopic abundance ratios for He, Ne, Ar, Mg, Si, Ca, and Fe measured in situ in the solar wind.  相似文献   

4.
We discuss data of light noble gases from the solar wind implanted into a metallic glass target flown on the Genesis mission. Helium and neon isotopic compositions of the bulk solar wind trapped in this target during 887 days of exposure to the solar wind do not deviate significantly from the values in foils of the Apollo Solar Wind Composition experiments, which have been exposed for hours to days. In general, the depth profile of the Ne isotopic composition is similar to those often found in lunar soils, and essentially very well reproduced by ion-implantation modelling, adopting the measured velocity distribution of solar particles during the Genesis exposure and assuming a uniform isotopic composition of solar wind neon. The results confirm that contributions from high-energy particles to the solar wind fluence are negligible, which is consistent with in-situ observations. This makes the enigmatic “SEP-Ne” component, apparently present in lunar grains at relatively large depth, obsolete. 20Ne/ 22Ne ratios in gas trapped very near the metallic glass surface are up to 10% higher than predicted by ion implantation simulations. We attribute this superficially trapped gas to very low-speed, current-sheet-related solar wind, which has been fractionated in the corona due to inefficient Coulomb drag.  相似文献   

5.
Using the high-resolution mass spectrometer CELIAS/MTOF on board SOHO we have measured the solar wind isotope abundance ratios of Si, Ne, and Mg and their variations in different solar wind regimes with bulk velocities ranging from 330 km/s to 650 km/s. Data indicate a small systematic depletion of the heavier isotopes in the slow solar wind on the order of (1.4±1.3)% per amu (2σ-error) compared to their abundances in the fast solar wind from coronal holes. These variations in the solar wind isotopic composition represent a pure mass-dependent effect because the different isotopes of an element pass the inner corona with the same charge state distribution. The influence of particle mass on the acceleration of minor solar wind ions is discussed in the context of theoretical models and recent optical observations with other SOHO instruments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Although the elemental composition in all parts of the solar photosphere appears to be the same this is clearly not the case with the solar upper atmosphere (SUA). Spectroscopic studies show that in the corona elemental composition along solar equatorial regions is usually different from polar regions; composition in quiet Sun regions is often different from coronal hole and active region compositions and the transition region composition is frequently different from the coronal composition along the same line of sight. In the following two issues are discussed. The first involves abundance ratios between the high-FIP O and Ne and the low-FIP Mg and Fe that are important for meaningful comparisons between photospheric and SUA compositions and the second involves a review of composition and time variability of SUA plasmas at heights of 1.0≤h≤1.5R .  相似文献   

7.
The roll manoeuvre of SOHO on September 3, 1997 provided the opportunity to study the northern coronal hole with SUMER slits in east-west orientation, so that polar plumes and inter-plume lanes could be observed simultaneously. A preliminary analysis of the observations shows that lines emitted by ions with the lowest formation temperatures (with the exceptions of Ne7+ and Ar7+) have the largest ratios of plume to lane radiances at heights between 35 000 km and 70 000 km above the photosphere. All lines have narrower widths inside plumes than outside. Electron densities have been deduced in plumes and lanes from Si VIII and Mg VIII line radiance ratios. The Mg IX pair was used to determine the corresponding electron temperatures. Neon (with a high first-ionization potential) is found to be less abundant relative to magnesium (with low FIP) in a plume compared to an inter-plume lane, but the variation is smaller than previously determined Ne/Mg abundance ratios in a plume relative to the photosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The ESA/NASA spacecraft Ulysses is making, for the first time, direct measurements in the solar wind originating from virtually all places where the corona expands. Since the initial two polar passes of Ulysses occur during relatively quiet solar conditions, we discuss here the three main regimes of quasi-stationary solar wind flow: the high speed streams (HSSTs) coming out of the polar coronal holes, the slow solar wind surrounding the HSSTs, and the streamers which occur at B-field reversals. Comparisons between H- maps and data taken by Ulysses demonstrate that as a result of super-radial expansion, the HSSTs occupy a much larger solid angle than that derived from radial projections of coronal holes. Data obtained with SWICS-Ulysses confirm that the strength of the FIP effect is much reduced in the HSSTs. The systematics in the variations of elemental abundances becomes particularly clear, if these are plotted against the time of ionisation (at the solar surface) rather than against the first ionisation potential (FIP). We have used a superposed-epoch method to investigate the changes in solar wind speed and composition measured during the 9-month period in 1992/93 when Ulysses regularly passed into and out of the southern HSST. We find that the patterns in the variations of the Mg/O and O7+/O6+ ratios are virtually identical and that their transition from high to low values is very steep. Since the Mg/O ratio is controlled by the FIP effect and the O7+/O6+ ratio reflects the coronal temperature, this finding points to a connection between chromospheric and coronal conditions.  相似文献   

9.
The kinetic properties of heavy ions in the solar wind are known to behave in a well organized way under most solar wind flow conditions: Their speeds are all equal and faster than that of hydrogen by about the local Alfvén speed, and their kinetic temperatures are proportional to their mass. The simplicity of these properties points to a straightforward physical interpretation; wave-particle interactions with Alfvén waves are the probable cause. With the SWICS sensor on board Ulysses, it is now possible to investigate the kinetic properties of many more ion species than before. Furthermore, the transition of Ulysses into the fast stream emanating from the south polar coronal hole since 1992 allows us to study these properties both in the slow, interstream solar wind, as well as in an unambiguously identified fast stream. We present data from SWICS/Ulysses on the dominant ions of He, C, O, Ne, and Mg. As a result we find that, both in the slow wind and in fast streams, the isotachic property is obeyed even better than it could be determined by the ICI instrument on ISEE-3. The mass proportionality ofT kin is also shown to hold for these ions, including the newly identified C and Mg.  相似文献   

10.
The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-wind—and hence solar—oxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ≤22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.1±0.9 ‰/amu for Li, between ?0.4 and +2.8 ‰/amu for C, +1.9±0.7‰/amu for N, +1.3±0.4 ‰/amu for O, ?7.5±0.4 ‰/amu for Mg, ?8.9±0.6 ‰/amu for Si, and ?22.0±0.7 ‰/amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, Δm/m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   

11.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind and other solar system abundances and find generally good agreement.  相似文献   

13.
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.  相似文献   

14.
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome these disagreements.  相似文献   

15.
Measurements of the anomalous cosmic ray (ACR) isotopic composition have been made in three regions of the magnetosphere accessible from the polar Earth orbit of SAMPEX, including the interplanetary medium at high latitudes and geomagnetically trapped ACRs. At those latitudes where ACRs can penetrate the Earth's magnetic field while fully stripped galactic cosmic rays (GCRs) of similar energies are excluded, a pure ACR sample is observed to have the following composition: 15N/N < 0.023, 18O/16O < 0.0034, and 22Ne/20Ne = 0.077(+0.085, –0.023). We compare our values with those found by previous investigators and with those measured in other samples of solar and galactic material. In particular, a comparison of 22Ne/20Ne measurements from various sources implies that GCRs are not simply an accelerated sample of the local interstellar medium.  相似文献   

16.
We review recent advances in determining the elemental, charge-state, and isotopic composition of 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations.The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the 1 to 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion.Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He+ along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22Ne/20Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.It is concluded that SEP acceleration is a two-step process, beginning with plasma-wave heating of the ambient plasma in the lower corona, which may include pockets of cold material, and followed by acceleration to the observed energies by either flare-generated coronal shocks or Fermi-type processes in the corona. Interplanetary propagation as well as acceleration by interplanetary propagating shock will often further modify the composition of SEP events, especially at lower energies.  相似文献   

17.
The rates of the most important ionization processes acting in interplanetary space on interstellar H, He, C, O, Ne and Ar atoms are critically reviewed in the paper. Their long-term modulations in the period 1974 – 1994 are reexamined using updated information on relevant cross-sections as well as direct or indirect data on variations of the solar wind/solar EUV fluxes based on IMP 8 measurements and monitoring of the solar 10.7 cm radio emission. It is shown that solar cycle related variations are pronounced (factor of 3 between maximum and minimum) especially for species such as He, Ne, C for which photoionization is the dominant loss process. Species sensitive primarily to the charge-exchange (as H) show only moderate fluctuations 20% around average. It is also demonstrated that new techniques that make use of simultaneous observations of neutral He atoms on direct and indirect orbits, or simultaneous measurements of He+ and He++ pickup ions and solar wind particles can be useful tools for narrowing the uncertainties of the He photoionization rate caused by insufficient knowledge of the solar EUV flux and its variations.  相似文献   

18.
Methods and results of investigations of the interstellar gas inside the heliosphere are summarized and discussed. Flow parameters of H and He and the relative abundances of H, He, N, O, and Ne in the distant heliosphere are given. Charge exchange processes in front of the heliosphere affect the flow of hydrogen and oxygen through the heliopause. The speed of hydrogen is reduced by 6 km/s, and screening leads to a reduction of the O/He and H/He ratios in the neutral gas entering the heliosphere. When the screening effect and the acceleration processes leading to the anomalous cosmic rays (ACR) are sufficiently understood, abundances in the LIC can be derived from measurements inside the heliosphere. Since isotopic ratios are virtually not changed by screening or by EUV and solar wind ionisation, relative abundances of isotopes in the gaseous phase of the LIC can be determined with no or minor correction from investigations of the neutral gas, pickup ions and ACR particles.  相似文献   

19.
In the large solar energetic particle (SEP) events, coronal mass ejections (CMEs) drive shock waves out through the corona that accelerate elements of the ambient material to MeV energies in a fairly democratic, temperature-independent manner. These events provide the most complete source of information on element abundances in the corona. Relative abundances of 22 elements from H through Zn display the well-known dependence on the first ionization potential (FIP) that distinguishes coronal and photospheric material. For most elements, the main abundance variations depend upon the gyrofrequency, and hence on the charge-to-mass ratio, Q/A, of the ion. Abundance variations in the dominant species, H and He, are not Q/A dependent, presumably because of non-linear wave-particle interactions of H and He during acceleration. Impulsive flares provide a different sample of material that confirms the Ne:Mg:Si and He/C abundances in the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/E1.5–3) instruments and focused on the morphology of x-rays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号