首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The International Space Station is a unique multi-faceted orbiting laboratory supporting research, development, test and evaluation of new innovative space and Earth-based applications. While NASA sponsored investigations on the ISS are focused largely on enabling future long duration human space exploration missions, Congress designated the US portion of the space station as a National Laboratory making its facilities available to other Federal agencies and private entities for non-exploration related ventures. RDT&E activities on the ISS encompass a number of technical areas including environmental control and life support, communications, materials science, guidance, navigation and control, propulsion, electrical power, and thermal control systems.  相似文献   

2.
The functions and capabilities of the Indian National Remote Sensing Agency are summarized. The principal goals of the Indian National Remote Sensing Agency are: the development and implementation of the indigenous remote sensing satellite program; continuous buildup and improvement of the facilities for generation of products from various sensor data; and development and utilization of new applications techniques for resource monitoring to facilitate technology transfer to the many user agencies  相似文献   

3.
4.
The Indian Space Program is described. The main objectives of the program are to provide operation space services to the nation, especially in the fields of communications and remote sensing, and to use modern space technology for the benefit of the Indian people. Some applications of the Indian Space Program are remote sensing, imagery, communications, broadcasting, and surveys of natural resources for water, crop, forest, land, minerals, and ocean. The emphasis is on the development and operation of indigenous satellites and launch vehicles for providing these space services  相似文献   

5.
The ATS-6 is the most advanced experimental satellite that has evolved from the Application Technology Satellite Program conducted and implemented by NASA Goddard Space Flight Center (NASA/GSFC). This project utilizes a state-of-the-art spacecraft and ground terminal network to perform advance studies and to conduct technological demonstrations in a large number of scientific areas. The design and implementation of this unique spacecraft permitted multiple experimentation simultaneously. The control of the spacecraft is performed at ATS Operational Control Center (ATSOCC) located at NASA/GSFC. Experimentation which was performed covered a wide spectrum of communications, technological, meterorological, and scientific subjects. Three principal ground terminals are utilized to assist the experimenters to acquire data. Data reduction and analysis are performed by the many facilities at NASA/GSFC in support of the experimenters.  相似文献   

6.
The unique characteristics of the Space Station are changing the ways payloads are designed and accommodated for orbital flight. Station accommodations need to be versatile and operationally flexible to permit integration of many types of equipment in a variety of modes; and autonomous to render each payload independent or invisible to the rest of the system and other mission equipment. This paper presents the various categories of Space Station payloads, the user facilities that are being designed to accommodate them, illustrates through scientific and commercial scenarios the utilization of those facilities, and identifies the factors that must be considered to make the Space Station an effective tool for the users.  相似文献   

7.
This paper describes the Space Weather Forecast Program managed by the Communications Research Laboratory of Japan. It is a long-range program consisting of three phases of five years each. This program emerged after an effort to investigate future needs for space environment prediction. We conclude that solar flares and magnetic storms are two main critical phenomena which will affect human's space activities in the 21st century. The core of the program is to set up a Space Weather Forecast Center which has core facilities: (1) a computer network system; (2) ground facilities for continuous observation of the Sun; and (3) a satellite-based space environment monitoring system. Emphasis is placed upon the necessity of internal cooperation for efficient operation of the Forecast Center.  相似文献   

8.
美国下一代深空网发展计划探析   总被引:1,自引:0,他引:1  
为适应未来美国深空探测的任务,此前美国NASA(National Aeronautics and Space Administration,国家航空航天局)对它的深空网发展的技术现状与能力进行了评估,梳理出了它们在未来深空任务中上下行通信速率需求,从而制定了美国下一代深空网的发展战略.针对此战略,梳理分析了美国深空网近年在深空通信导航领域开展的多项重大技术革新与演示验证试验,并从中剖析总结出了它的下一步的技术发展路线,期冀为我国深空测控网技术发展策略的制定提供参考.  相似文献   

9.
为适应我国载人航天任务的新特点,有效支持空间站量化风险评价工作,调研了美国国家航空航天局(NASA)载人登月、国际空间站、航天飞机等载人航天项目的概率风险评价(PRA)工作,对比分析了PRA方法在不同载人航天项目中的应用效果。在此基础上,针对我国空间站工程的特点,初步提出了基于PRA的空间站工程量化风险评价方案与工作思路,对该方法在我国空间站实施所存在的问题进行了分析,并在方法规范、数据收集等方面提出了工作建议,为我国空间站量化风险评估工作提供技术支持。  相似文献   

10.
Space Science Reviews - The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the...  相似文献   

11.
火星中继已作为火星探测重要组成部分,被美国NASA(National Aeronautics and Space Administration,国家航空航天局)和ESA(European Space Agency,欧空局)广泛应用于火星EDL(Entry,Descent and Landing,进入、下降和着陆)以及火星表面探测中。针对该情况,介绍了火星中继系统的组成和工作情况。结合NASA和ESA火星探测的成功经验和成果,重点对火星轨道器和着陆器的中继应答机的性能进行了梳理和分析,并对该技术的后续发展进行了展望。基于此,可为我国自主火星探测提供借鉴和参考。  相似文献   

12.
风洞试验设备是一个国家航空航天事业发展的基础设施,对国家的航空航天事业、武器装备研制以及国民经济的发展发挥着非常重要的作用。美国国家航空航天管理局(NASA)拥有世界上规模最大的风洞群,在风洞设备的建造、运行和管理方面积累了丰富的经验。作者根据美国对风洞试验设备的战略需求、试验能力需求等多种需求状况,对NASA风洞试验设备的现状进行了综合研究,重点对NASA风洞试验设备的综合状况、技术竞争力以及在资金日益削减情况下对风洞试验设备的管理进行了分析。在此基础上,对NASA在风洞试验设备的需求、规划、建造、技术竞争力、运行与管理等方面进行了经验总结,为我国风洞试验设备的规划、建造、运行与管理提供参考和借鉴。  相似文献   

13.
This paper describes Japanese Experiment Module (JEM) which is a Japanese contribution to International Space Station (SS) Program. First half of phase B study of JEM was completed last March successfully. JEM primary function and basic configuration has been established. JEM consists of a Pressurized Module (PM), an Exposed Facility (EF), a scientific/equipment airlock, a local remote manipulator, and an Experimental Logistic Module (ELM). With all those hardware elements, JEM will accommodate general scientific and technology development research (some of which are to utilize the advantage of microgravity environment), and also accommodate control panels for the Space Station Mobile Remote Manipulator System and attached payloads.  相似文献   

14.
Flight safety issues of an all-electric aircraft include flight control system reliability, protection from electromagnetic interference and lightning, and protection from design errors (primarily in software) and handling qualities when failures occur if the all-electric aircraft does not have traditional aerodynamic stability. Some of these questions already have partial answers, but others remain open. The Federal Aviation Administration expects that discussions with experts in the aviation industry, the military services, the National Aeronautics and Space Administration, and foreign regulatory authorities for civil aircraft will be necessary to resolve these issues.  相似文献   

15.
Lockheed Martin Missiles & Space (LMMS), Ultralife Batteries, Inc. (UBI), Eagle Picher Technologies, LLC (EPT), Sandia National Laboratories (SNL) and Rentech, Inc. (RTI) are developing lithium ion solid polymer electrolyte (Li-ion SPE) batteries. Under a new Advanced Technology Program (ATP), this team will develop new high-energy density cells and batteries for space and portable electronics applications. These new batteries will utilize new high-energy density anode and cathode active materials developed by SNL and RTI. UBI will incorporate these new materials into an optimized Li-ion SPE electrode laminate. EPT will develop batteries for aerospace applications based on this electrode laminate technology while LMMS will design the battery charge management controller and provide system expertise  相似文献   

16.
Speech recognition features desired by air traffic controllers, such as the ability to use complex messages and address hundreds of individual aircraft could not be implemented a decade ago, but these tasks became possible with improved speech recognition engines and an increase in processing power and memory. Speech recognition was a key element in the air traffic controller (ATC) workstation used to support a Controller-Pilot Data Link Communications (CPDLC) system. Our work, under the direction of the Avionics Engineering Center at Ohio University, was in support of the Federal Aviation Administration's (FAA) Runway Incursion Reduction Program (RIRP) and the National Aeronautics and Space Administration's (NASA) Runway Incursion Prevention System (RIPS) conducted at the Dallas-Fort Worth International Airport (DFW). This paper examines the challenges and opportunities of developing voice recognition software solutions in ATC workstations using multiple dialects and accents, complex and varied grammars and terminology, accuracy, hardware restrictions, and user-training procedures.  相似文献   

17.
针对载人月球探测,在我国现有深空测控资源的基础上,结合其他航天组织,如NASA (National Aeronautics and Space Administration,美国国家航空航天局)、ESA(European Space Agency,欧空局)等分布在全球的深空测控资源,提出了全球深空站布局体系.该体系包括我国深空站在内的8个地面站,大体形成“南四北四,均匀分布”的格局.并以美国“重返月球”计划深空站布局为参照,对比分析了布局体系的测控覆盖、三向测量和干涉测量共视弧段,讨论了布局干涉测量不同观测站三角的测角精度,可以为后续载人月球探测任务提供支持和参考.  相似文献   

18.
The Space Station Freedom was, from the mid-1980's through 1993, the design for an international orbiting laboratory facility. The Space Station Freedom was comprised of “utility” systems, such as power generation and distribution, thermal management, and data processing, and “user” systems such as communication and tracking, propulsion, payload support, and guidance, navigation, and control. These systems are required to work together to provide various station functions. To protect the lives onboard and the investment in the station, the systems and their connectivity had to be designed to continue to support critical functions after any single fault for early assembly stages, and after any two faults for later stages. Of these critical functions, attitude control was the most global, incorporating equipment from nearly all major systems. The challenge was to develop an architecture, or integration, of these systems that would achieve the specified level of fault tolerant attitude control and operate, autonomously, for the three-month unmanned periods during the assembly process. Additionally, this architecture had to maintain the desired utility of the station for each stage of the assembly process. This paper discusses the approach developed for integrating the systems such that the fault tolerance requirements were met for all stages of assembly. Some of the key integration issues are examined and the role of analysis tools are described. The resultant design was a highly channelized one, and the reasons and the benefits of this design will be explored. The final design was accepted by the Space Station Control Board as the design baseline in July 1992  相似文献   

19.
针对空间数据传输与交互支持问题,介绍了CCSDS(Consultative Committee for Space Data Systems,空间数据系统咨询委员会)、IOAG/IOP(Interagency Operations Advisory Group/InterOperability Plenary,机构间操作指导组/机构间互操作大会),以及IETF/IRTF (Internet Engineering Task Force/Internet Research Task Force,互联网工程任务组/互联网研究任务组)在空间网络体系架构方面的研究进展,分析了IETF和CCSDS针对空间网络环境所发布的最新网络层协议和传输层协议.研究结果表明,IP(Internet Protocol,互联网协议)和DTN(Delay Tolerant Networking,容延迟网络)是空间网络协议体系的2个发展方向,而空间网络技术则呈现出3个清晰的发展趋势,现阶段需要重点关注路由、服务质量保证和数据流传输这3个方面的技术问题.  相似文献   

20.
Rosetta Ground Segment and Mission Operations   总被引:1,自引:0,他引:1  
At the European Space Operations Centre in Darmstadt (Germany) the activities for ground segment development and mission operations preparation for Rosetta started in 1997. Many of the characteristics of this mission were new to ESOC and have therefore required an early effort in identifying all the necessary facilities and functions. The ground segment required entirely new elements to be developed, such as the large deep-space antenna built in New Norcia (Western Australia). The long duration of the journey to the comet, of about 10 years, required an effort in the operations concept definition to reduce the cost of routine monitoring and control. The new approaches adopted for the Rosetta mission include full transfer of on-board software maintenance responsibility to the operations team, and the installation of a fully functioning spacecraft engineering model at ESOC, in support of testing and troubleshooting activities in flight, but also for training of the operations staff. Special measures have also been taken to minimise the ground contact with the spacecraft during cruise, to reduce cost, down to a typical frequency of one contact per week. The problem of maintaining knowledge and expertise in the long flight to comet Churyumov–Gerasimenko is also a major challenge for the Rosetta operations team, which has been tackled early in the mission preparation phase and evolved with the first years of flight experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号