首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of SDINS in-flight alignment using equivalent errormodels   总被引:1,自引:0,他引:1  
The psi-angle model and the equivalent tilt (ET) model have been widely used for in-flight alignment (IFA) to align and to calibrate a strapdown inertial navigation system (SDINS) on a moving base. However, these models are not effective for a system with large attitude errors because the neglected error terms in the models degrade the performance of a designed filter. In this paper, with an odometer as an external aid, a velocity-aided SDINS is designed for IFA. Equivalent error models applicable to IFA with large attitude errors are derived in terms of rotation vector error and additive and multiplicative quaternion errors. It is found that error models in terms of additive quaternion error (AQE) become linear. Thus the proposed error models reduce unmodeled error terms for a linear filter. From a number of van tests, it is shown that the proposed error models effectively improve the performance of IFA  相似文献   

2.
Multiposition alignment of strapdown inertial navigation system   总被引:3,自引:0,他引:3  
The authors demonstrate that the stationary alignment of strapdown inertial navigation system (SDINS) can be improved by employing the multiposition/technique. Using an observability analysis, it is shown that an optimal two-position alignment not only satisfies complete observability conditions but also minimizes alignment errors. This is done by analytic rank testing of the stripped observability matrix and numerical calculation of the error covariance. It is also shown that an optimal three-position alignment accelerates the convergence of the alignment error compared with two-position alignment  相似文献   

3.
Strapdown inertial navigation using dual quaternion algebra: error analysis   总被引:1,自引:0,他引:1  
In a strapdown inertial navigation system (INS), the general displacement of a rigid body is traditionally separately modeled and analyzed, i.e., direction cosine matrix or quaternion for rotation analysis and vector for translation analysis. As a subsequent work of a companion paper (Wu et al., 2005), this paper adopts dual quaternion algebra, a most concise and unified mathematical tool for representing the general displacement of a rigid body, to analyze error characteristics of the strapdown INS. Two new error models in terms of quaternion algebra are developed: the additive dual quaternion error (ADQE) model and multiplicative dual quaternion error (MDQE) model. Both are expected to facilitate the future inertial navigation-based integrated navigation filter.  相似文献   

4.
Analysis Strapdown Navigation Using Quaternions   总被引:1,自引:0,他引:1  
A brief review of the theory of strapdown inertial navigation is presented in which the attitude of the sensor box with respect to inertial space is represented by the four-parameter quaternion vector. . A 4X4 matrix R is defined which aids in relating quaternions to direction cosines and facilitates interpretation of the equations for error propagation, which are also derived. In the interpretation, it is shown that the error in the quaternion vector causes aor-(correctable) scale factor error and an equivalent tilt vector error that propagates the same way as the platform tilt vector in a gimbaled system.  相似文献   

5.
捷联惯性导航速度更新算法中,将载体坐标系中的比力积分增量变换到导航参考坐标系中,载体姿态变化的影响通常采用一阶近似模型进行计算。本文分析了包括角振动和加速运动的动态运动下一阶近似模型的局限,在典型角振动及加速运动条件下对忽略姿态变化二阶项造成的速度更新误差进行了理论分析。通过比较,揭示了对偶四元数比力积分算法精度高于传统比力积分算法的原因,即和传统比力积分算法相比,对偶四元数比力积分算法等价于考虑了载体姿态变化影响的二阶项。通过典型角振动及加速运动条件下传统捷联惯性导航算法和对偶四元数导航算法的仿真比较,对理论分析结果进行了验证。  相似文献   

6.
基于四元数误差模型的捷联惯导系统对准方法   总被引:5,自引:0,他引:5  
传统的小干扰方程并不能描述捷联惯导系统在大失准角下的误差传播特性 ,推导了姿态误差为大角度时的四元数误差方程 ,并指出当姿态误差为小量时 ,所推导的误差模型与小干扰方程是等价的。仿真结果表明在大失准角下的空中对准过程中 ,采用四元数误差方程以及非线性滤波技术能有效地提高对准精度  相似文献   

7.
In order to improve the navigation accuracy of an inertial navigation system (INS), composed of quartz gyroscopes, the existing real-time compensation methods for periodic errors in quartz gyroscope drift and the periodic error term relationship between sampled original data and smoothed data are reviewed. On the base of the results, a new compensation method called using former period characteristics to compensate latter smoothness data (UFCL for short) method is proposed considering the INS working characteristics. This new method uses the original data without smoothing to work out an error conversion formula at the INS initial alignment time and then compensate the smoothed data errors by way of the formula at the navigation time. Both theoretical analysis and experimental results demonstrate that this method is able to cut down on computational time and raise the accuracy which makes it a better real-time compensation approach for periodic error terms of quartz micro electronic mechanical system (MEMS) gyroscope's zero drift.  相似文献   

8.
在基于对偶四元数的捷联惯导解算方法的基础上,推导了以惯性系作为导航系的惯导误差方程,在此基础上设计了卡尔曼滤波组合导航算法。通过激光惯导跑车采集数据,进行了仿真分析,试验结果表明,该组合导航算法能有效的消除惯导累积的速度误差和位置误差,相比于目前广泛应用的INS/GPS组合导航算法,本文描述了INS/GPS组合导航的另一种实现方式,获得了相当的精度,具有一定的工程应用价值。  相似文献   

9.
 For the navigation algorithm of the strapdown inertial navigation system, by comparing to the equations of the dual quaternion and quaternion, the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame. By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution, the accuracy advantage of the gravitational velocity based on dual quaternion is addressed. In view of the idea of the attitude and velocity algorithm based on dual quaternion, an improved navigation algorithm is proposed, which is as much as the rotation vector algorithm in computational complexity. According to this method, the attitude quaternion does not require compensating as the navigation frame rotates. In order to verify the correctness of the theoretical analysis, simulations are carried out utilizing the software, and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.  相似文献   

10.
Modeling quaternion errors in SDINS: computer frame approach   总被引:2,自引:0,他引:2  
We propose new equivalent tilt error models which are applicable to the analysis of the terrestrial strapdown inertial navigation systems (SDINS), based on the quaternions. The currently available equivalent tilt error models, like the conventional Φ model of the gimbaled inertial navigation systems (GINS), are derived only by the true frame approach. The true frame approach has a computational disadvantage that it produces an error model where the attitude error equation is coupled with its position and velocity error equations. The motivation of this work is to solve this problem. As a result, two kinds of error models are derived. Among them, one is derived by the computer frame approach for practical onboard implementations. Thus, like the conventional GINS Ψ model, its attitude error equation is decoupled from the position and velocity error equations. The other is derived in order to show the relationship between the true frame approach and the computer frame approach which are applied to the quaternion-based SDINS. Thus, like the GINS δΘ model, it can be used to transform the error variables into each other which are calculated by the two different approaches  相似文献   

11.
基于低成本惯性测量单元的组合导航系统已经逐步成为导航领域的研究热点和主要发展方向。但是,低成本惯性元件精度低,无法进行自主初始对准。基于规范化四元数的概念,研究了一种仅利用GPS的位置和速度数据对组合系统进行初始对准的新算法,克服了传统滤波方法进行初始对准存在的诸多局限性。理论分析和仿真计算表明,这种算法仅受组合系统自身硬件条件的约束,可以较好地应用于组合系统中低成本惯性单元的初始对准。  相似文献   

12.
由于可以补偿惯性器件在三个轴向上的输出误差,双轴旋转调制技术被广泛应用于捷联惯导系统(SINS)。选择了一种合理且实用的十六次序双轴转位方案,并对其调制原理和误差进行了分析。初始对准技术是捷联惯导系统的一项重要技术,其对准精度直接决定了后续导航的精度。在粗对准完成后,当姿态误差角较大时,后续的精对准误差模型呈非线性特性,故选择了滤波精度高、稳定性强的平方根容积Kalman滤波算法(SCKF)来解决这一问题。考虑到在实际对准过程中,量测噪声的统计特性易发生变化,将SCKF算法与Sage-Husa算法相结合,在传统Sage-Husa SCKF算法的基础上提出了一种改进的自适应滤波算法(ASCKF)。该算法采用QR分解来完成对噪声协方差的平方根矩阵估计,从而避免了传统Sage-Husa SCKF算法中所估噪声协方差矩阵不正定的问题。最后,通过仿真证实了ASCKF算法可被很好地应用于量测噪声统计特性发生变化的初始对准中。  相似文献   

13.
Terrestrial inertial navigation is typically performed using an instrumented platform stabilized in a ?local-level? configuration for convenient generation of geographic navigation information. The local-level geographic reference must be maintained by torquing the system gyros, a requirement which may be incompatible with high-precision inertial sensors currently under development. Gyro torquing in a gimballed navigation system can be avoided by employing a ?space-stable? mechanization of the platform where an inertial, rather than geographic, reference is used for navigation calculations. The software design problems associated with this concept, especially those related to the application of Kalman filtering, are the principle focus of this paper. Although the space-stable configuration has been used extensively for spacecraft navigation and guidance, it has not been widely applied to terrestrial navigation, either for air or marine applications. The chief problem in this application is to perform navigation in local-level coordinates, using system outputs generated in an inertial reference frame. It can be demonstrated that, although the navigation system error dynamics are identical for the local-level and space-stable configurations, the dynamics of the sensor errors which drive these systems are quite different. These differences in sensor error propagation characteristics impose new requirements for the design of procedures to accomplish system calibration, alignment, and reset. This paper outlines a Kalman filtering approach which is applicable to all of the above procedures, and presents numerical results to demonstrate its effectiveness.  相似文献   

14.
A refined stochastic model for the errors of the Loran-C radio navigation aid is described, and it is shown how this model can be used to improve the performance of integrated navigation systems. In addition to the usual propagation errors, Loran-C time of arrival measurements are occasionally plagued with sudden intermittent errors of a particular magnitude and caused by receiver cycle selection errors. These result in sudden large jumps in the calculated position solution. The Loran-C error has been modeled as the sum of a diffusion process, representing the normal propagating errors, and a pure jump process of Poisson type, representing the cycle selection errors. A simple integrated navigation system is then described, based on the Loran-C model and the standard dead reckoning (heading and speed) system model. Assuming that the observed process is governed by a linear stochastic difference equation, a recursive linear unbiased minimum variance filter is developed, from which the Loran-C and dead reckoning errors, and hence position and velocity, can be estimated  相似文献   

15.
晃动基座捷联惯导系统初始对准迭代方法   总被引:1,自引:0,他引:1       下载免费PDF全文
由于受风力或发动机启动等因素的影响,惯导系统载体(如导弹、飞机、舰船和车辆)经常遇到低频晃动的情况。晃动干扰使得陀螺测量到的地球自转角速度信噪比大幅下降,从而导致常用的对准方法无法满足高精度初始对准要求。针对这一问题,提出了一种基于晃动基座的捷联惯导系统迭代初始对准方法。本方法由惯性导航计算出水平速度误差,利用最小二乘法估算出水平角速度误差、姿态误差和航向误差,然后进行迭代计算,从而算出导航初始时刻的姿态和航向。车载(发动机启动)试验结果表明,该算法既提高了晃动基座条件下的初始对准精度,航向角误差的方差采用静态对准时为0.39244°,摇摆对准为0.03331°,本文采用的迭代对准为0.00883°,缩短了对准时间,迭代对准2min的航向角精度等效于静态对准和摇摆对准5min的精度。  相似文献   

16.
光纤旋转系统的安装误差、标度因数误差等误差参数会随着时间而改变,而惯性器件误差是导航过程中误差的主要来源,因此在系统自对准的同时对关键误差参数进行标定能够提高系统的导航性能。为了在不显著增加光纤旋转系统准备时间的条件下,结合光纤旋转系统特点,提高旋转系统的导航精度,将对光纤旋转系统扰动基座下的自对准技术进行研究。提出了一种优化改进的旋转路径和自标定自对准流程,并对旋转路径进行了可观度分析,在该旋转路径下采用了Kalman滤波算法对陀螺的安装误差、陀螺标度因数误差、加表零偏进行估计并补偿。仿真与系统试验结果表明,采用该方案后,系统速度误差有明显降低。  相似文献   

17.
惯性导航系统的误差随时间累积,旋转调制技术可以有效地提高惯导系统的长航时精度,旋转调制方案是决定旋转式捷联惯导系统导航精度的一个重要因素.针对双轴旋转惯导系统,相较于16次序转位方案,提出了一种新的32次序双轴旋转调制方案.根据捷联惯导系统的误差方程,推导出旋转捷联惯导的误差方程,分析了误差补偿的机理,研究了惯性器件常值偏置误差、标度因数误差和安装角误差的传播特性.仿真结果表明,32次序双轴旋转调制方案相对于16次序转位方案有明显的优势,可以有效地降低姿态角误差和经纬度误差.  相似文献   

18.
旋转技术能够有效调制激光陀螺和加速度计的误差,提高惯性导航系统的精度。首先基于惯性测量单元的误差模型,分析了旋转技术的基本原理。然后对旋转技术的旋转方案、最优转动速率、旋转机构误差对系统精度的影响、载体角运动对旋转效果的影响、采用旋转技术的惯导解算、采用旋转技术的初始对准与测漂等进行了综述,探讨了我国研究旋转技术的重点研究方向,为开展我国旋转式光学陀螺惯导系统的研究提供了一定参考。  相似文献   

19.
This research describes a technique and a performance analysis of a fiber-optic strapdown inertial system with sensing cluster continuous rotation around the vertical body axis of the vehicle. The bias errors of these inertial sensors, gyros and accelerometers with cluster rotation, will have periodically varying corresponding components along the body axes. The modulated sensor errors produce reduced system errors. Simulation results indicate that, compared with the conventional method, the proposed approach attenuates the navigation errors and alignment errors due to the gyros' error and the accelerometers' error.  相似文献   

20.
王跃钢  杨家胜  杨波 《航空学报》2012,33(12):2322-2329
针对纬度未知条件下捷联惯导系统(SINS)晃动基座的初始对准问题,提出晃动基座下的纬度估计算法和初始对准方法。前者通过惯性坐标系下两个不同时刻的重力加速度向量的夹角来求取纬度;后者利用惯性坐标系下的姿态更新来实时地反映载体在晃动干扰下的姿态变化,结合初始姿态的最优估计实现初始对准。理论分析表明,本文提出的纬度估计算法的误差主要由加速度计误差决定,陀螺误差和晃动干扰对其影响很小。仿真结果表明,本文提出的纬度估计算法和初始对准方法适用于纬度未知条件下晃动基座的初始对准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号