首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高超声速飞机热管理系统控制模型构建与仿真   总被引:4,自引:2,他引:2  
以高超声速飞机为研究对象,提出了一种基于单相流体回路的热管理系统(TMS)模型,通过热控制策略与热沉调度模型实现热沉制冷能力最大化目标,解决新型高速飞机日益彰显的冷源不足问题。热控制策略利用系统辨识与热载荷预测算法,提出基于能量平衡与温度反馈配合的热控制模型,解决热惯性带来的控制延迟问题。基于热沉冷却能力评估与热载荷匹配提出热沉调度模型,旨在合理利用各种冷源,解决飞行后期冷源不足的问题。研究通过MATLAB/Simulink仿真验证模型及算法,结果表明:所设计的TMS能够满足高超声速飞机长时间飞行需求;考虑能量平衡的控制模型在超调量及衰减比方面均优于温度反馈控制模型;基于热沉调度策略能够降低冷源消耗速率,更充分地利用各种机载热沉。   相似文献   

2.
为了研究振动环境对相变组件热控性能的影响,制备了基于纯硬脂酸和硬脂酸/泡沫铜复合相变材料的两种相变热控实验件,并进行了静止和振动环境中的热控实验。实验结果表明:泡沫铜的存在能够有效地强化相变组件的热控性能,在5000W/m2时,添加泡沫铜后平衡温度降低了19℃,有效热控时间延长了19.4%;在振动环境下,纯硬脂酸实验件的平衡温度降低了9.5℃,有效热控时间延长了13.2%;硬脂酸/泡沫铜实验件的有效热控时间延长了10.5%,振动带来的强迫对流能够有效强化相变组件的热控性能;并且相对于振动频率,振幅变化对影响结果的扰动较小,在一定的频率范围内,振动的影响随着频率的增加而变大。该研究可以为机载电子设备相变热控技术的应用提供参考。   相似文献   

3.
深空探测发动机热环境研究   总被引:4,自引:3,他引:1  
魏超  张忠利 《航空动力学报》2010,25(5):1139-1144
对深空探测发动机热环境进行了分析,发现深空探测发动机喷管将给探测器辐射较高热量;为了尽可能阻止热量散发至探测器,拟采用热阻材料;采用热阻材料后,喷管壁温较没有热阻材料时高,但还在使用范围之内.热防护分析方法经过了地面试车验证,计算结果与试车测量值符合较好.   相似文献   

4.
液体火箭发动机层板式预燃室液氧发汗冷却热控制   总被引:8,自引:4,他引:4       下载免费PDF全文
讨论了富氧预燃室液氧发汗冷却的分析计算方法。发汗流对燃气热流的阻隔分析采用Bartle-Leadon修正方法来完成,室壁温度分布和热穿透深度应用结构层板与发汗流存在温差的传热模型获得。讨论了发汗流压降和控制流道长度对预燃室壁温的控制作用。  相似文献   

5.
朱剑琴  赵超凡  邱璐  陶智 《航空动力学报》2019,34(11):2503-2508
建立了含热障涂层的涡轮叶片简化传热模型,通过理论推导建立了热障涂层的有效性判据,并基于此进行了热防护有效性分析。理论分析与数值实验表明:由热障涂层带来的复合传热表面传热系数的变化会显著影响热障涂层的热防护效果;在发动机典型工况下,对于处于高温区的高压涡轮叶片前缘处,热障涂层引起的复合传热表面传热系数变化率最大值的范围为1.25%~10.83%以满足热防护有效性要求。在工程中应特别注意由于热障涂层的应用带来的复合传热表面传热系数的变化,否则会导致热防护失效,甚至产生反效果。   相似文献   

6.
针对飞机隔热结构中金属筋条的热桥问题,设计了两类典型飞机隔热结构构型。为了研究分析热桥效应对隔热性能的影响,对各构型进行瞬态热传导有限元分析,得到在热面温度分别为100℃,200℃,300℃,424℃时考核点的温度,并通过隔热性能实验验证了有限元方法的有效性。结果表明:热桥对隔热结构的隔热性能有较大影响,设计隔热结构时应充分考虑热桥现象;提出了热桥阻断的方法。  相似文献   

7.
为解决航空发动机部件热防护以及热管理问题,针对CCA(cooled cooling air)技术,采用高孔隙率泡沫金属替代传统管翅式换热器金属翅片,设计一种轻质、高效、紧凑的小尺寸S型泡沫金属管翅式换热器。换热器芯体为3D打印的钛合金制作,重129 g,由S型管束以及泡沫金属翅片组成,翅片安装在管束直管段处。流动传热实验模拟航空发动机机匣外部的空-油换热器,冷侧为水,热侧为高温空气,测定两侧流体的流量、进出口温度及压力。结果表明:泡沫金属作为换热器的翅片,传热系数增大43.94%、换热量提升21.7%、综合换热性能增加25.43%,功重比平均提升17.26%,可达14.61 kW/kg。这说明泡沫金属能够提升换热器的整体性能,可用于未来航空发动机相似结构换热器的设计。  相似文献   

8.
飞机整体瞬态热状况的数值仿真研究   总被引:3,自引:0,他引:3  
 在分析飞机内外热环境的耦合传热机制基础上,建立了描述飞机整体瞬态热状况的物理数学模型。引入壁面热流函数,将飞机蒙皮外的气动对流与辐射换热作用转化为舱内热分析的浮动热边界条件,实现了飞机内外耦合热作用的解耦计算,避免了难以实现的直接耦合求解。采用区域分解技术,将飞机整体分解为特性不同的多个求解区域。采用蒙特卡罗法求解舱内设备之间的辐射换热,采用热网络法求解设备内部及各设备之间的辐射-导热-对流耦合换热。利用该方法对某型飞机飞行过程中的瞬态热状况进行了数值模拟,获得了飞机舱内的瞬态温度场,分析了相关因素的影响,为飞机设计及相关研究提供了重要依据。  相似文献   

9.
在传统冷壁热流模拟方法的基础上,进一步提出以热壁温度及热流密度的时序变化曲线为控制目标的燃气流热试验工况确定方法,即利用壁温控制目标与实测值的偏差对热壁热流控制目标做一定修正,以尽可能消除和弥补前期试验误差,同时利用300K冷壁边界热流密度数据库插值迭代方法,快速确定一定气动热模拟所需燃气流温度,解决了沿飞行轨迹瞬态热试验技术难题之一。利用CFD数值模拟方法,建立了典型尖楔结构高/中温双路燃气流组合热试验300K冷壁边界热流密度数据库,并针对典型尖楔结构沿某飞行轨迹9个典型状态气动热模拟需求,确定相应双路燃气流热模拟参数。相关数值计算结果显示,驻点区域热流密度平均模拟偏差为4.5%,平板区热流密度平均模拟偏差为4.6%,两者最大模拟偏差均不大于8%,满足工程试验精度要求。同时,瞬态热分析结果显示第45s时,距驻点1mm处最大温度梯度达到21K/mm,距驻点10.1mm处最大温度梯度达到18K/mm,满足气动热大温度梯度效应需求。   相似文献   

10.
针对高超声速飞行器的特点,分析了热防护系统中应用高导热材料实现热管理的必要性。通过对碳材料石墨片层结构的热传导机理及其各向异性特征进行分析和讨论,提出了利用高导热碳材料进行疏导式热管理的思路,并根据碳材料的结构特点设计了几种可能的热管理结构模型。  相似文献   

11.
高超声速飞行器热环境与结构传热的多场耦合数值研究   总被引:2,自引:0,他引:2  
周印佳  孟松鹤  解维华  杨强 《航空学报》2016,37(9):2739-2748
为了准确预测高超声速飞行器面临的严峻气动热/力环境以及结构的热力响应,发展了高超声速流动与结构传热耦合框架。采用分区求解方法,通过耦合界面的实时数据传递,实现了基于Navier-Stokes方程的高超声速化学非平衡计算流体力学(CFD)求解器与结构的热力全耦合有限元法(FEM)求解器的多场耦合计算,建立了高超声速飞行器的多场耦合数值分析方法。首先对经典高超声速圆柱绕流实验进行了耦合计算,结果与实验值吻合良好。然后针对典型的超高温陶瓷(UHTC)材料的耦合传热问题进行了数值研究,考虑热传导效应对气动热环境和结构热响应预测的影响,结果表明对于复杂外形且热导率相对较高的UHTC材料,结构内部热传导对热环境和表面温度分布的影响不可忽略。最后针对UHTC材料热物性(比热和热导率)非线性对高超声速流动传热过程的影响进行了研究,结果表明当比热和热导率处于合理的误差范围内时,材料表面温度响应对其变化并不敏感。  相似文献   

12.
倾斜微槽道热管中纳米流体的应用   总被引:1,自引:1,他引:0  
鲍然  刘振华 《航空动力学报》2010,25(6):1271-1276
为了研究热管倾斜角度和压力对热管蒸发段、冷凝段传热系数以及最大换热功率的影响,对使用水基CuO纳米流体为工质的倾斜微槽道热管强化换热特性进行实验研究.实验装置主要由带角度调节功能的微槽道热管和加热、冷却系统组成.实验结果发现,用水基纳米流体替代去离子水为工质时,热管整体换热特性得到明显增强,蒸发段、冷凝段传热系数以及最大功率都能大幅度提高,总热阻明显降低.倾斜水热管的蒸发段和冷凝段传热系数比水平水热管的有大幅提高,但最大功率变化不大.而倾斜纳米流体热管不但蒸发段和冷凝段传热系数比水平纳米流体热管有大幅提高,而且最大功率更有接近一倍的增加.对水和纳米流体两种工质,对应于最佳换热特性的倾斜角都是75°.因此,纳米流体对倾斜热管有良好的应用前景.   相似文献   

13.
航空发动机轴承腔热状态分析模型及温度场计算   总被引:3,自引:2,他引:1  
分析了轴承腔的主要热源。建立了轴承及石墨密封摩擦热的计算模型、密封热泄漏量的计算模型、对流换热系数的计算模型及温度场的计算模型。用热网络法建立了轴承腔的热平衡方程组,并采用拟牛顿法求解了该方程组。获得了10种不同工况下的温度场计算结果,该结果与本文的测试结果基本吻合。   相似文献   

14.
针对飞行器超声速巡航时遭受机体外部气动加热与辐射换热的情况,提出了一套综合考虑燃油系统、冲压空气与消耗性冷却剂制冷系统及热防护系统的超声速飞行器综合热管理系统;针对典型的超声速飞行包线,基于二阶多项式响应面代理模型技术,以热防护层厚度、回油质量流量以及消耗性相变冷却剂质量流量为设计变量,以燃烧室进口燃油温度为约束条件,以变量引起的起飞重量增量及其燃油质量代偿损失最小为设计目标,采用自适应模拟退火算法对综合热管理系统进行了优化设计。结果表明:采用二阶多项式响应面代理模型计算的结果与仿真计算结果的误差低于2%;在本文选取的设计变量取值范围内,最优方案倾向于热防护层厚度和冷却剂质量流量取最小值而回油质量流量取中间值,且最优方案较第一组初始方案就目标函数而言减重约16%。  相似文献   

15.
吸热/蓄热器是空间太阳能热动力发电系统关键部件之一,主要作用是吸收太阳入射热流和蓄热。由于吸热/蓄热器内换热管各容器单元表面温度不同,热流通过热辐射重新分布,所以容器单元的表面热辐射率将很大的影响吸热器的热性能。通过太阳能热动力发电系统吸热器腔体辐射模型,结合换热管的传热模型计算吸热器的传热过程。计算得到了两种典型的换热管表面热辐射率下吸热器的能量损失、工质吸收能量、换热管最大温度,工质出口温度等结果,进行了比较分析,说明了表面处理对于吸热器热性能的重要性。计算结果可以用于吸热器的设计。   相似文献   

16.
超临界压力下航空煤油传热恶化判别准则   总被引:2,自引:2,他引:0       下载免费PDF全文
王彦红  李素芬 《推进技术》2019,40(11):2528-2536
为防止航空发动机热防护中的传热恶化现象,对竖直上升圆管内超临界压力RP-3航空煤油的换热开展了实验研究。着重考察了热流密度、进口压力、进口温度等运行参数对传热恶化的影响。探究了传热恶化特性,获得了传热恶化起始条件判别准则。进一步分析了浮升力和热加速对传热恶化的影响,建立了适用于航空煤油新的浮升力和热加速判别准则,以及考虑两者影响的换热关联式。结果表明:航空煤油传热恶化出现在Nu/Nu0<0.5的条件下。以此作为依据,当浮升力因子Bu>1.6×10-6或热加速因子Ac>3.3×10-6时,引发传热恶化现象。换热关联式兼顾了浮升力和热加速影响,具有较高的预测精度。  相似文献   

17.
闫浩  吴晓明 《航空动力学报》2021,36(5):1007-1021
基于多材料变密度拓扑优化方法提出了一种密度指数函数插值的有序多材料性能近似(or-dered exponential approximation of material properties,ordered-EAMP)模型,数学性质以及算例表明,与传统的SIMP/RAMP插值相比,该模型具有计算稳定,收敛速度快,优化结...  相似文献   

18.
用理论及实验相结合的方法研究了微通道热沉流动与传热特性.首先,总结并提出了微通道热沉对流传热的理论模型;然后,实验测量并计算了微通道热沉的压降及努塞尔数,其理论值与实验值吻合较好,平均误差在10%左右;最后,分析了不同雷诺数及通道宽高比时的导热热阻、对流热阻及电容热阻占总热阻份额的大小.结果表明:对流热阻是影响微通道热沉传热性能的重要因素,当雷诺数为985,通道宽高比为1时,对流热阻占总热阻90%左右;而在雷诺数较小时,导热热阻占总热阻的份额小于10%,可以忽略不计;电容热阻占总热阻的份额随着雷诺数及通道宽高比的增大而降低.   相似文献   

19.
热防护系统高温纤维隔热毡传热及有效热导率分析   总被引:2,自引:0,他引:2       下载免费PDF全文
针对重复使用运载器热防护系统纤维隔热毡内部导热和辐射的耦合换热问题进行了分析,应用有限差分法建立了纤维隔热毡的数值分析模型.通过数值求解传热方程,计算了稳态的有效热导率.计算结果表明辐射和气体传导是纤维隔热毡内的主要传热方式,辐射作用随压力和试样密度的增加而降低,在试样温度高的一侧辐射是主要的传热方式,而在温度低的一侧气体传导为主要的传热方式;试样的有效热导率随纤维的平均直径、压力和温差的增加而增加,随试样密度的增加而降低.本文的计算结果与文献中的实验结果吻合较好,可以为纤维隔热毡及热防护系统的优化设计提供理论参考.  相似文献   

20.
热传输行为是空天飞行器热防护系统服役过程中的重要问题,研究随机复合材料的热传输机理,可为热防护系统材料与结构的一体化设计提供理论依据。针对随机复合材料的热传导问题,发展一种统计多尺度边界元算法,首先建立等效材料参数的统计多尺度分析模型,然后给出统计意义下等效参数的多尺度边界元预测算法,并通过与理论结果的对比来验证算法的有效性,最后研究微结构分布状态对陶瓷多孔材料等效导热系数的影响。结果表明:采用统计多尺度模型及多尺度边界元算法预测随机复合材料的热传导性能是有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号