首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma and magnetic field parameter variations through fast forward interplanetary shocks were correlated with the peak geomagnetic activity index Dst in a period from 0 to 3 days after the shock, during solar maximum (2000) and solar minimum (1995–1996). Solar wind speed (V) and total magnetic field (Bt) were the parameters with higher correlations with peak Dst index. The correlation coefficients were higher during solar minimum (r2 = 56% for V and 39% for Bt) than during solar maximum (r2 = 15% for V and 12% for Bt). A statistical distribution of geomagnetic activity levels following interplanetary shocks was obtained. It was observed that during solar maximum, 36% and 28% of interplanetary shocks were followed by intense (Dst  −100 nT) and moderate (−50  Dst < −100 nT) geomagnetic activity, whereas during solar minimum 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity. It can be concluded that the upstream/downstream variations of V and Bt through the shocks were the parameters better correlated with geomagnetic activity level, and during solar maximum a higher relative number of interplanetary shocks can be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50% to be followed by intense/moderate geomagnetic activity.  相似文献   

2.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

3.
Estimates of the geomagnetic indices made with real-time solar wind measurements form the basis of many space weather forecast techniques. We analyze 20 years of hourly AL and OMNI solar wind data to determine geomagnetic importance of various solar wind and IMF parameters. Besides the solar wind driver of primary importance (VBs), the first-order contributions, significantly increasing the quality of the model are: solar wind velocity, 2 h of solar wind prehistory and 1 h of AL history. The factors of secondary importance, marginally contributing to overall statistical quality, are IMF By, solar wind density, and IMF fluctuations. The dynamic pressure is geomagnetically effective only if the pressure is lower than the average. Modelling of the same data set with an artificial neural network (ANN) confirmed our selection of important factors. Statistically the ANN model was just marginally better than our analytic expression . The AU index dependence is principally different from AL in several respects; therefore modelling of the AE composite index is physically misleading.  相似文献   

4.
利用新建成的子午工程地磁台站数据,对比分析了地磁平静期间(2011年3月20-27日)和磁暴期间(2011年9月25日至10月1日)Pc3-4地磁脉动的时空分布特征及其对行星际条件的响应.数据分析结果表明,中低纬度(1.3<L<2.3,L为磁壳参数)的Pc3-4地磁脉动在这两个时期内的分布存在明显的晨昏不对称性,在昼侧前出现明显的Pc3-4地磁脉动并与行星际上游波动密切相关,其振幅增强可能与太阳风动压脉冲相关,高速太阳风更易导致Pc3-4地磁脉动;而对于近赤道低纬(L<1.3)区域,无论是在地磁平静期还是磁暴期均未能观测到Pc3-4地磁脉动,Pc3-4地磁脉动存在明显的纬度效应.   相似文献   

5.
Measurements of the magnetic field and low energy plasma by the GEOTAIL spacecraft have been used to study the relationship between variations of the plasma velocity and of the magnetic field in the distant (100–200 RE) and middle (40–80 RE) tail. The analysis was carried out separately for the tail lobes and the plasma sheet. It is shown that the absolute values of the magnetic field and plasma velocity, as well as their corresponding components (VX and BX, VY and BY, VZ and BZ), are linearly connected in the tail lobes. In the plasma sheet, however, the plasma velocity and the magnetic field do not seem to be related to one another. The distant plasma sheet seems to be in a regime of turbulence. The diffusion coefficients estimated from our data set of the velocity parameters in the plasma sheet are in good agreement with the theoretical predictions of Antonova and Ovchinnikov (1996, 1999).  相似文献   

6.
Pc4 signatures for the year 2013, extracted from geomagnetic north–south and east–west components of induction coil magnetometer (LEMI 30) from low latitude station Desalpar (DSP), operated by Institute of Seismological Research (ISR), India have been investigated vis-à-vis the prevalent interplanetary parameters (IMF) as well as the geomagnetic activity indices. A clear dominance of Pc4-5 (467 events) over Pc3 (17 events) is observed. Local time variation of Pc4 shows a peak in the noon sector in both X and Y components. Our investigations show that the dominant peak frequency is 10 mHz at low latitude region. Correlations with solar wind and IMF parameters illustrate highest occurrence of Pc4 for a solar wind speed of 300–400 km/s and average IMF B field of 3–6 nT. The amplitude of Pc4s at DSP shows an increase with increasing solar wind speed, plasma density, solar wind dynamic pressure and average B field which is also reflected in the trend of frequency variation of these pulsations. We report that IMF clock angle at low latitude does not have influence on Pc4 occurrence. Based on the characteristics of these events, detected in latitudinally distributed stations from low and mid-latitudes from northern and southern hemisphere, we infer that modes were compressional, which could be driven by K-H instability or solar wind dynamic pressure, as compressional modes can propagate to low latitude with little attenuation.  相似文献   

7.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

8.
It has generally been assumed that a geomagnetic storm is entirely driven by external forces—e.g., solar wind Ey = Vx × Bz, Vx, V2x (where the components of the electric field, E, the magnetic field, B, and velocity, V, are given in GSE coordinates)—which would imply that particle injections in the ring current (RC) or outer radiation belts should be highly correlated. However the data from ISTP are showing that the magnetosphere can have at least two very different responses to the same solar wind (SW) conditions: a classic, enhanced RC with Dst response, or a 1000-fold increase in the outer radiation belt MeV electrons (ORBE). August 29, October 14 and 23, 1996 are examples of Dst storms, whereas April 15, 1996 and January 10, 1997 are examples of MeV storms. It is this second response that is so deadly to some geosynchronous spacecraft, whereas geomagnetic storms are categorized by the first response. Neither of these appear to be correlated to the SW conditions driving substorms. Why should the SW energy appear in the radiation belts or the ring current independently? We hypothesize that the RC couples to the electric power available (Ey), the ORBE couple to the mechanical power available (Vx), and the Tail couples to the magnetic energy (Bz) available in the SW. The transducer for RC may be subauroral parallel potentials, the transducer for ORBE may be the cusp, while the Tail substorm transducer is yet a third independent mechanism for extracting SW energy. Evidence for this theory comes from the novel POLAR satellite that traverses the cusp, the plasmasheet and the radiation belts.  相似文献   

9.
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2.  相似文献   

10.
Measurements of solar wind velocity have been derived from simultaneous coronal sounding observations of radio amplitude scintillations at both S-band and X-band during the solar conjunction of the Ulysses spacecraft in August 1991. The signal amplitude was recorded with an averaging time of 1 s. A cross-correlation analysis between S- and X-band amplitude fluctuations shows that the fluctuation signature at S-band appears to be shifted to earlier times with respect to the X-band recording. The time difference is proportional to the coronal separation of the ray paths and inversely proportional to the apparent velocity of plasma inhomogeneities across the ray paths. Preliminary estimates of solar wind speed obtained using model calculations of the differential refraction are found to lie near the expected transition from subsonic to supersonic velocities at solar offset distances of the order of 6–8 R. As a byproduct of the investigation, we find that the transition from weak to saturated scintillation occurs at about 16 R for S-band and 7 R for X-band.  相似文献   

11.
We present a simple yet numerically robust technique, using autoregressive linear filters, to remove unwanted “colored noise” from solar wind and radiation belt electron data at sub-daily resolution. The remaining signal is then studied using finite impulse response linear prediction filters to represent the driven portion of the linear dynamics that describe the coupling between solar wind speed and electron flux. Sub-daily resolution response profiles covering magnetic L-shells between 1.1 and 8.0 RE are presented which are consistent with daily resolution response functions. Namely, while there is strong global coherence governing electron flux dynamics, there are at least two distinct responses. The first response is an immediate dropout of electrons between L = 4 and L = 7 that is at least a partly adiabatic effect associated with enhancements in the ring current. This is followed by a 1–2 day delayed enhancement across the same L-shells that is likely a result of increased radial diffusion. The second response is an immediate enhancement seen between L = 3 and L = 4 with a typical duration of less than one day. Plausible explanations for this second response are briefly discussed, but neither empirical nor theoretical evidence can establish conclusively a definite physical cause. Finally, the response profiles show significant solar cycle and seasonal dependencies, indicating that better model output might be achieved with: (1) additional simultaneous solar wind inputs; (2) more sophisticated dynamical model structures capable of incorporating non-linear feedback; and/or (3) time-adaptive linear filters that can track non-stationary dynamics in time.  相似文献   

12.
Presented is the analytical approximation of averaged solar wind velocity radial dependence in the solar wind acceleration region at heliolatitudes below 60° under low and moderate solar activity. This empirical approximation is based on the data of radio sounding of the solar corona with radio signals from various spacecraft. Deduced is an equation connecting the solar wind velocity radial dependence and the radial dependence of solar wind plasma polarization electric field intensity. This allows constructing a semi-empirical radial dependence of plasma polarization electric field corresponding to the empirical radial dependence of solar wind velocity. Main properties of the semi-empirical dependence, which is based on radio sounding data, are described.  相似文献   

13.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

14.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

15.
Using the Dst and AE geomagnetic index values and parameters of interplanetary magnetic field and solar wind we have examined the geoeffectiveness of transient ejections in the solar wind, namely, magnetic clouds and high-speed streams. It is found that for magnetic clouds the dependences of indices on the solar wind electric field are nonlinear of different kind. In contrast to magnetic clouds, the dependence of Dst and AE geomagnetic index values on the solar wind electric field agrees closely with the linear one for high-speed streams. We suggest approximating formulas to describe dependences obtained taking into account the relation of the electric field transpolar potential to the electric field and dynamic pressure of the solar wind. We suppose that the interplanetary magnetic field fluctuations also contribute to these dependences.  相似文献   

16.
等离子体彗星的某些相关分析   总被引:2,自引:0,他引:2  
本文进行了彗星的分类统计,给出了"太刚活动"和"等离子体彗星出现频数"的统计,表示出它们之间无相关性。作了"太阳活动"与"彗星事件"的相关分析,表明其相关性是弱的;但是,"太阳风风速"与"彗星事件"的相关性较强。最后,用我国自己的资料作为一个实例,讨论了等离子体彗星的象差角及其扭折骚扰。   相似文献   

17.
The solar activity displays variability and periodic behaviours over a wide range of timescales, with the presence of a most prominent cycle with a mean length of 11 years. Such variability is transported within the heliosphere by solar wind, radiation and other processes, affecting the properties of the interplanetary medium. The presence of solar activity–related periodicities is well visible in different solar wind and geomagnetic indices, although their time lags with respect to the solar cycle lead to hysteresis cycles. Here, we investigate the time lag behaviour between a physical proxy of the solar activity, the Ca II K index, and two solar wind parameters (speed and dynamic pressure), studying how their pairwise relative lags vary over almost five solar cycles. We find that the lag between Ca II K index and solar wind speed is not constant over the whole time interval investigated, with values ranging from 6 years to 1 year (average 3.2 years). A similar behaviour is found also for the solar wind dynamic pressure. Then, by using a Lomb-Scargle periodogram analysis we obtain a 10.21-year mean periodicity for the speed and 10.30-year for the dynamic pressure. We speculate that the different periodicities of the solar wind parameters with respect to the solar 11-year cycle may be related to the overall observed temporal evolution of the time lags. Finally, by accounting for them, we obtain empirical relations that link the amplitude of the Ca II K index to the two solar wind parameters.  相似文献   

18.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   

19.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   

20.
Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150 km/s group velocity. The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号