首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
We have analyzed XMM-Newton archive data for five clusters of galaxies (redshifts 0.223–0.313) covering a wide range of dynamical states, from relaxed objects to clusters undergoing several mergers. We present here temperature maps of the X-ray gas together with a preliminary interpretation of the formation history of these clusters.  相似文献   

2.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

3.
We discuss the detection of soft excess X-ray emission in a sample of 19 clusters of galaxies observed by XMM-Newton. In 6/19 clusters evidence for a soft X-ray excess is found. Four of these clusters show soft X-ray and O VII line emission from gas with a temperature of 0.2 keV. The centroid of this oxygen line is consistent with the redshift of the cluster. The intensity and spatial extend of the soft excess agrees with previous PSPC measurements. These observations are interpreted as emission from warm-hot intergalactic medium filaments, with density enhancements near the cluster centers, consistent with theoretical predictions. In the other two soft excess clusters a non-thermal origin is consistent with the data.  相似文献   

4.
The galaxy cluster 3C 129 contains two radio galaxies, the prototypical head tail radio galaxy 3C 129 and the weaker radio galaxy 3C 129.1. The tail of the first radio galaxy extends over more than 15′ across the sky. In this paper, we report on Chandra spectroscopy observations of the galaxy cluster, complemented by new and archival radio data taken with the Very Large Array (VLA) at 0.33, 1.4, 5, and 8 GHz and by HI-observations performed with the dominion radio astrophysical observatory (DRAO). We describe the Chandra results on the properties of the Intra-Cluster Medium (ICM) and discuss extended X-ray emission detected from the host galaxy of the radio galaxy 3C 129.1 and from the inner jet of the radio galaxy 3C 129. Finally, we report on the results of an ICM/radio plasma pressure balance study along the tail of the radio galaxy 3C 129.  相似文献   

5.
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open.  相似文献   

6.
Rapidly cooling gas is commonly found near the centres of clusters of galaxies. The structure of the resulting gas flows is reviewed. Total gas cooling rates of several hundred M yr−1 have been observed in a number of cases. Thermal instability and the ultimate fate of the cooled gas are discussed. The cooled gas could easily have formed a massive central galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号