首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Homick JL 《Acta Astronautica》1979,6(10):1259-1272
Space motion sickness, presumably triggered by sudden entry into a weightless environment, occurred with unexpected frequency and severity among astronauts who flew the Skylab missions. Recovery from symptoms was complete within 3-5 days, and as revealed by the Skylab M131 Human Vestibular Function Experiment, all crewmembers were immune to experimentally induced motion sickness after mission day 8. This syndrome has been recognized as a possible threat to the early mission well-being and operational efficiency of at least some individuals who will fly space missions in the future. The causes of space motion sickness are not clearly understood, nor have satisfactory methods been identified to date for its prediction, prevention and treatment. In order to minimize the potential impact of this syndrome on Space Shuttle crew operations the National Aeronautics and Space Administration has organized a broad program of inter-disciplinary research involving a large number of scientists in the United States. Current research on the etiology of space motion sickness is based to a large extent on the so called sensory conflict theory. Investigations of the behavioral and neurophysiological consequences of intralabyrinthine, as well as intermodality sensory conflict are being performed. The work in this area is being influenced by the presumed alterations that occur in otolith behavior in weightlessness. In addition to sensory conflict, the possible relationship between observed cephalad shifts of body fluids in weightlessness and space motion sickness is being investigated. Research to date has failed to support the fluid shift theory. Research underway to identify reliable test methods for the prediction of susceptibility to space motion sickness on an individual basis includes attempts to (a) correlate susceptibility in different provocative environments; (b) correlate susceptibility with vestibular and non-vestibular response parameters, the latter including behavioral, hemodynamic and biochemical factors and (c) correlate susceptibility with rate of acquisition and length of retention of sensory adaptation. Controlled studies are also being performed during parabolic flight as a means of attempting to validate predictive tests for susceptibility to this syndrome. Research to develop new or improved countermeasures for space motion sickness is underway in two primary areas. One of these involves anti-motion sickness drugs. Significant achievements have been realized with regard to the identification of new highly efficacious drug combinations, dose levels and routes of administration. Although pronounced individual variations must be accounted for in selecting the optimum drug and dose level, combinations of promethazine plus ephedrine or scopolamine plus dexidrine are presently the drugs of choice. Work is also underway to identify side effects associated with anti-motion sickness drug use and to identify new drugs which may selectively modify activity in central neural pathways involved in motion sickness. In addition to research on drugs, efforts are being made to develop practical vestibular training methods. Variables which influence rate of acquisition of adaptation, length of retention of adaptation and transfer of protective adaptation to new environments are being evaluated. Also, included in this area is the use of biofeedback and autogenic therapy to train individuals to regulate autonomic responses associated with motion sickness. While valuable new knowledge is expected to evolve from these combined research programs, it is concluded that the final validation of predictive tests and countermeasures will require a series of controlled space flight experiments.  相似文献   

2.
In the last 20 years, the biomedical problems facing man in space have been brought into sharper focus. Space motion sickness is presently our most serious problem. Its etiology remains obscure, but the "sensory conflict" theory appears most plausible. No valid predictive tests of susceptibility exist and presently we must rely on medication for prevention or mitigation of symptoms. Adaptation/biofeedback techniques may prove useful. Cardiovascular "deconditioning" may be effectively attenuated by use of anti-g suits or plasma expanding techniques. Recent bedrest simulation studies would seem to indicate that concerns about chronically elevated central venous pressure during space flight are unfounded. The loss of red cell mass in space flight appears to be self-limited, independent of mission duration, and not of clinical concern, based on recent Soviet experiences. And finally, clodronate, a new diphosphonate effective in preventing hypercalciuria and negative calcium balance in normal human bedrested subjects, may prove effective in preventing or lessening skeletal mineral loss in space.  相似文献   

3.
Analysis of errors in atmospheric density measurements by lidar on board the ISS is performed. It is shown that using as the lidar transmitter a Nd:YAG laser with moderate parameters of emission at a wavelength of 353 nm and a receiving mirror diameter of 0.4 m, it is possible to cover with a 10% measurement error a height range, on average, from 40–60 km and 30–40 km in the nighttime and daytime, respectively, down to the troposphere. Working with emission at 266 nm with a 10% error, it is possible to move to the heights of the mesosphere (70 km) and penetrate the atmosphere down to a height of 40 km. Thus, the use of two harmonics makes it possible to assimilate the height range of atmospheric density measurements from on board the ISS beginning from 70 km and down to the troposphere.  相似文献   

4.
Experimental studies of visual mechanisms suggests that the CNS represents image information with respect to preferred horizontal and vertical axes, as shown by a phenomenon known as the "oblique effect". In the current study we used this effect to evaluate the influence of gravity on the representation and storage of visual orientation information. Subjects performed a psychophysical task in which a visually-presented stimulus line was aligned with the remembered orientation of a reference stimulus line presented moments before. The experiments were made on 5 cosmonauts during orbital space flight and additionally on 13 subjects in conditions of normal gravity with a tilting chair. Data were analyzed with respect to response variability and timing. On earth, these measurements for this task show a distinct preference for horizontally and vertically oriented stimuli when the body and gravitational axes were aligned. This preference was markedly decreased or disappeared when the body axis was tilted with respect to gravity; this effect was not connected with ocular counter-rolling nor could we find a preference of any other intermediate axis between the gravity and body aligned axes. On the other hand, the preference for vertical and horizontal axes was maintained for tests performed in microgravity over the course of a 6 month flight, starting from flight day 6. We concluded that subjects normally process visual orientation information in a multi-modal reference frame that combines both proprioceptive and gravitational cues when both are available, but that a proprioceptive reference frame is sufficient for this task in the absence of gravity after a short period of adaptation. Some of the results from this study have been previously published in a preliminary report. Grant numbers: 99-04-48450.  相似文献   

5.
Kuipers A 《Acta Astronautica》1996,38(11):865-875
In 1993 four astronauts performed physiological experiments on the payload "Anthrorack" during the second German Spacelab mission D-2. The Anthrorack set-up is a Spacelab double rack developed under the management of the European Space Agency. It consists of an ECHO machine, a respiratory monitoring system (gas analyzer with flow meter), a blood centrifuge, an ergometer, a finger blood pressure device, ECG, body impedance measurement device and a respiratory inductance plethysmograph. Experiment-specific equipment was used as well. Nineteen investigators performed experiments in the cardiovascular, pulmonary, fluid-renal and nutritional physiology area. Results on central venous pressure, ocular pressure, vascular resistance, cardiac output, tissue thickness and orthostatic intolerance are presented in the cardiovascular area. In the pulmonary area first results are mentioned on O2 transport perfusion and ventilation distribution and breathing pattern. From the fluid-renal experiments, data from diuresis, sodium excretion and hormonal determinations are given. Finally results from glucose metabolism and nitrogen turnover experiments are presented.  相似文献   

6.
研究了同时具有终端角度(攻击角度)和终端时间(攻击时间)约束的制导问题.通过将非线性运动学制导模型中的自变量由导引时间变换为速度方向角,可以利用最小值原理直接推导出一种闭环形式制导律,而不必引入任何的线性化处理.在该制导律的导引下,导弹能够精确击中目标并且精确满足终端时间和角度的约束.为了研究该制导律的可行性,本文定义并分析了若干重要参数的可行域.该闭环制导律及其可行性分析被应用于多弹齐射攻击的两种情况.数字仿真结果验证了所提出方法的有效性.  相似文献   

7.
周边式桁架可展开天线的形面调整   总被引:4,自引:0,他引:4  
本文针对周边式桁架可展开天线进行了基于优化方法的网面调整。以纵向调节索调节力的大小为设计变量,网状反射面的均方根误差为目标函数,应力和频率为约束条件,建立了形面调整的优化数学模型,并用遗传算法对网面调整进行了优化、仿真。数值结果表明:基于优化方法的网面调整是可行的,对工程应用具有一定的指导意义。  相似文献   

8.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

9.
In less than a decade, Cubesats have evolved from purely educational tools to a standard platform for technology demonstration and scientific instrumentation. The use of COTS (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising scientific value. Furthermore, advantages in terms of development cost and development time with respect to larger satellites, as well as the possibility of launching several dozens of Cubesats with a single rocket launch, have brought forth the potential for radically new mission architectures consisting of very large constellations or clusters of Cubesats. These architectures promise to combine the temporal resolution of GEO missions with the spatial resolution of LEO missions, thus breaking a traditional trade-off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific requirements in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. Based on this review, several Earth observation measurements are identified that can potentially be compatible with the current state-of-the-art of Cubesat technology although some of them have actually never been addressed by any Cubesat mission. Simultaneously, other measurements are identified which are unlikely to be performed by Cubesats in the next few years due to insuperable constraints. Ultimately, this paper is intended to supply a box of ideas for universities to design future Cubesat missions with high scientific payoff.  相似文献   

10.
In Italy, the selection of the Italian payload scientists has been performed according to the Spacelab Program of ESA. Twenty-four subjects underwent a screening performed by the Health Service of Italian Air Force. They were requested to pass an exercise test on treadmill and another ten-minute test on centrifuge, subject to the effect of +3 Gz. The authors briefly describe the results of the test. Noteworthy is the determination of Central Flicker Fusion Frequency. This parameter makes it possible to assess the endurance level of the subject, much earlier than other techniques (e.g. EKG). The importance of an accurate preliminary screening is emphasized as well as of successive training periods. Future studies will be undertaken to compare evoked cortical potentials with behaviour parameters of space safety, with a view to setting up a subtle tool of evaluation for both future candidates and payload scientists.  相似文献   

11.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

12.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   

13.
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   


14.
15.
《Acta Astronautica》2007,60(4-7):512-517
The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.  相似文献   

16.
《Acta Astronautica》1987,15(11):813-821
Within the scope of problems concerning orbit computation, our study is based on information obtained from the set of measurements performed during one satellite pass within visibility of a tracking station.At best, this information is restricted to a number of geometrical components which are studied and interpreted. It is the aggregate of the set of geometrical components obtained during the set of passes which allow orbit computation to be performed.The quality of this information is then examined, i.e. the precision of geometric components obtained and factors liable to have a negative effect.Signature errors of elementary measurements performed during each pass and which may seriously impair orbit computation are finally considered.Once these signatures are known, a valuable tool is held for the specification of localisation measuring instruments according to desired performance in orbit computation.The cases of range and Doppler type measurements are examined here.  相似文献   

17.
The increased heterogeneity of International Space Station (ISS) crews′ composition (in terms of nationality, profession and gender) together with stressful situations, due to space flight, can have a significant impact on group interaction and cohesion, as well as on communications with Mission Control Center (MCC) and the success of the mission as a whole. Culturally related differences in values, goals, and behavioral norms could influence mutual perception and, thus, cohesive group formation. The purpose of onboard “Interaction-Attitudes” experiment is to study the patterns of small group (space crew) behavior in extended space flight. Onboard studies were performed in the course of ISS Missions 19–30 with participation of twelve Russian crewmembers. Experimental schedule included 3 phases: preflight training and Baseline Data Collection; inflight activities once in two weeks; post-flight measurement. We used Personal Self-Perception and Attitudes (PSPA) software for analyzing subjects′ attitudes toward social environment (crewmembers and MCC). It is based on the semantic differential and the repertory grid technique. To study the content of interpersonal perception we used content-analysis with participation of the experts, independently attributing each construct to the 17 semantic categories, which were described in our previous study. The data obtained demonstrated that the system of values and personal attitudes in the majority of participated cosmonauts remained mostly stable under stress-factors of extended space flight. Content-analysis of the important criteria elaborated by the subjects for evaluation of their social environment, showed that the most valuable personal traits for cosmonauts were those that provided the successful fulfillment of professional activity (motivation, intellectual level, knowledge, and self-discipline) and good social relationships (sociability, friendship, and tolerance), as well. Post-flight study of changes in perceptions, related to Real Self-image, did not reveal significant differences between the images of Russian crew-members and representatives from foreign space agencies. A certain difference in perceptions was found in cosmonauts with more integrated system of evaluations: after space flight they perceived foreign participants as “closer” to their Ideal, while Russian crew-members were perceived mostly as “distant” from Ideal Self of these subjects. Perceptions of people from Earth were also more critical. These differences are likely to be manifestations of interpersonal perception stereotypes. Described patterns of changes in perceptions of cosmonauts, who have performed space flight as a part of ISS multinational crew, allow us to suggest the recommendations for development of ISS crew training, in particular, it seems useful to increase the time of joint training for deepening of intercultural interaction.  相似文献   

18.
G. Russo   《Acta Astronautica》2009,65(9-10):1196-1207
The first dropped transonic flight test (DTFT) of the USV Program, performed with Castor, the first of the two spacecrafts developed within the USV Program, was performed on Saturday 24th February 2007, from Tortolì Airport in Sardinia.At 8:30 a.m. the 340 000 m3 stratospheric balloon lifted off from the East coast of Sardinia, bringing the flying test bed (FTB) up to 20.2 km before release within the isolated sea polygon controlled by Italian air force test range in Salto di Quirra (PISQ). The mission ended at 10:30 a.m. with the splash-down of the space vehicle.The flight itself was very good, with a nose-up manoeuvre under transonic conditions, reaching a maximum Mach as high as 1.08. The mission target was completely achieved as some 2 million measures were taken related to flight data, housekeeping, as well as 500 aerodynamic and structural experimental sensors. Unfortunately, the vehicle has been damaged more than expected during splash-down.Many national and international institutions and industries contributed to the mission carrying out, under the supervision and technical guide of CIRA: Italian Space Agency, Italian Air Force, Italian Navy, Italian Civil Aviation Authority, Italian Company for Air Navigation Services, Port Authorities, European Space Agency, Techno System Dev., Vitrociset, Carlo Gavazzi Space, Space Software Italia, Alcatel Alenia Space Italy, ISL-Altran Group.The paper reports the actual status of post-flight data analysis.  相似文献   

19.
Carbon fiber reinforced plastic (CFRP) tubes, with the increasing dimensions and performances requested for space structures, are becoming a basic building element of boom-type structures for large precision reflectors, towers and payload support structures such as the Modular Payload Support Structure, the Shuttle Pallet Satellite or the European Retrievable Carrier. It is very important for such applications that the CFRP tubes have minimum thermal distortions and very high stiffness.An extensive test program was performed to characterise the CFRP tubes that are used for such applications. Measurements of coefficient of thermal expansions, thermal conductivity, thermal cycling, microstructure behaviour, as well as mechanical tests and outgassing tests were performed. The main purpose was to correlate the microcracking with the thermal cycling and the coefficient of thermal expansion and thermal conductivity.These types of activities for the CFRP tubes were performed for the first time in Europe and important results were found, especially in the area of microcracking generation and correlation with engineering parameters. The influence of the thermal cycling speed on the microcracking was also studied. Most of the tests were conducted at ESTEC (European Space Research & Technology Centre, Holland) by the European Space Agency in the frame of the technology research activities.  相似文献   

20.
The ability to voluntarily stabilize the head in space during lateral rhythmic oscillations of the trunk has been investigated during parabolic flights. Five healthy young subjects, who gave informed consent, were examined. The movements were performed with eyes open or eyes closed, either during phases of microgravity or phases of normal gravity. The main result to emerge from this study is that the head may be stabilized in space about the roll axis under microgravity conditions with, as well as without vision, despite the reduction of the vestibular afferent and the muscle proprioceptive inputs. Moreover, the absence of head stabilization about the yaw axis confirms that the degrees of freedom of the neck can be independently controlled, as it was previously shown [1]. These results seem to indicate that voluntary head stabilization does not depend crucially upon static vestibular afferents. Head stabilization in space may be in fact organized on the basis of either dynamic vestibular afferents or a postural body scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号