首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
吉洪蕾  赵辉  陈仁良  吴文韬 《航空学报》2018,39(11):122156-122167
建立了基于直升机舰面起降动态仿真的风限图(WOD)计算方法,综合计入舰船尾流、直升机运动和驾驶员操控等多因素的作用提升风限图计算的准确度。基于耦合舰船非定常尾流的飞行动力学模型,发展了适于直升机多轴协同操控的驾驶员模型,建立了舰面起降轨迹的数学描述和生成方法,形成计入舰船尾流、直升机运动和驾驶员操控等多因素综合作用的直升机舰面起降动态仿真方法。在此基础上,总结风限图计算判据,建立风限图计算方法。计算结果表明,某些风况下直升机在舰面起飞和降落过程中受到舰船尾流的干扰远大于在甲板上方悬停时受到的作用。本文方法能够捕捉到不同起降点和起降方式导致舰船尾流时空变化的干扰,与传统计算方法相比,显著提升了风限图计算的准确度。  相似文献   

2.
舰艇空气尾流环境是影响舰载航空装备飞行安全的重要因素。借助CFD技术研究了舰艇空气尾流场内气流的运动规律、甲板上方涡流结构。应用激光片光显示系统对舰艇缩比模型的流态进行了风洞实验,并用流场实测数据对理论计算结果进行了校验。研究结果有助于指导舰艇外形优化设计和舰载航空装备的安全性分析。  相似文献   

3.
针对某漂浮体在海上的漂浮稳定性进行了分析,研究了重心与浮心的相对位置对其漂浮稳定性的影响,并根据该漂浮体的实际参数进行了计算,得出了其可以稳定漂浮的结论。  相似文献   

4.
吉洪蕾  陈仁良  李攀 《航空学报》2016,37(3):771-779
为解决舰面非定常流场数据量过大的问题,采用本征正交分解(POD)方法对舰面流场进行重构,发展了一种耦合POD重构流场的直升机舰面起降数值模拟方法。首先采用计算流体力学(CFD)方法计算舰面非定常流场,获得离散数据样本;然后提取流场的POD模态,并截取能够捕捉到原流场主要特征的少量模态对原流场进行重构;最后建立耦合重构舰面流场的直升机高阶飞行动力学模型。以直升机返航进场为例进行数值模拟,并将计算得到的操纵量和飞行状态与飞行试验结果进行对比。结果表明:使用POD方法重构后的舰面流场数据约为原始样本数据的8.5%,且重构流场与原始流场吻合良好,POD方法能够解决舰面非定常流场数据量过大的问题。与飞行试验数据的对比表明,本文方法捕捉到了舰面非定常流场对直升机的影响,可用于直升机舰面起降研究。  相似文献   

5.
直升机/舰动态配合是舰载直升机飞行安全的重要课题。首先,对动态配合过程中涉及的因素进行了分析和讨论,得出对旋翼尾流场和舰面流场耦合求解的简化方案;然后,以某舰和直升机为例,对其舰面流场仿真关键技术进行了描述,主要内容包括舰面流场的CFD仿真、针对动态配合对舰尾流进行重构等,并对典型的直升机起降轨迹进行了描述;最后,通过有关直升机/舰动态配合流场计算仿真的途径和方法得出了若干结论,可为该领域研究者提供参考。  相似文献   

6.
动基座近舰面流场数值模拟   总被引:1,自引:0,他引:1  
李旭  祝小平  周洲  郭佳豪 《航空学报》2018,39(12):122131-122131
航母尾迹流场对舰载机的着舰有较大影响,所以需要对其流场特点进行研究,分析不同状态下舰载机气动特性的变化。采用嵌套网格技术对航母处于垂荡状态下无人机的着舰进行了模拟。首先,利用SFS2舰船进行数值计算,验证了舰船流场的数值模拟方法。然后,对比了单独无人机定常与非定常计算结果,表明所建立的嵌套网格适用于无人机流场的模拟。接着,对航母单相流和两相流的流场结果进行了分析,结果显示甲板下方的流动对甲板上方流场没有大的影响。因此,忽略了水的影响只对航母在空气流场中的特性进行研究,结果表明航母尾迹非定常特性明显,静止航母下滑轨迹上的速度均处于周期性波动状态,且波动幅值随着远离航母而逐渐衰减;而在垂荡情况下航母尾迹变得更加紊乱,水平方向速度波动的周期性减弱,但垂向速度的波动幅值进一步增大。对于静止航母,无人机在不同时刻着舰气动特性的变化也存在差异;当航母处于垂荡状态时,无人机的升力和俯仰力矩在短时间内会有更大的波动。  相似文献   

7.
An aeroelastic simulation of a shipboard helicopter rotor with ship motions during engagement and disengagement operations is investigated to explore the coupled dynamic behavior between the rotor and the ship. A finite element analysis based on a moderate deflection beam model is employed to capture the flap, lag and torsion deflections of the rotor blade. The ship is treated as a six-degree-of-freedom rigid body. By using the Hamilton?s principle, system equations of motion are derived based on the generalized force formulation. The responses agree well with the test data of the rotor blade droop stop impact and the transient aeroelastic response of the shipboard teetering model rotor. Parametric investigations illustrate that the ship pitch motion has significant influence on the maximum negative displacement of the blade tip. Additional over 25% increase of the tip deflection can be introduced by the ship pitch motion. The aerodynamic and inertial couplings between the ship motion and the rotor have significantly nonlinear influence on the transient aeroelastic response. Both terms should be taken into account in the coupled helicopter–ship dynamics model.  相似文献   

8.
倾转旋翼机是当前旋翼飞行器研究的热点,但有关舰载倾转旋翼机着舰域耦合流场的研究还很少。以两栖攻击舰(LHA)和V-22"鱼鹰"倾转旋翼机为研究对象,基于雷诺平均Navier-Stokes(RANS)方程和SST k-ω湍流模型对舰载倾转旋翼机着舰域耦合流场进行数值模拟研究,并探讨了不同着舰高度时机/舰耦合流场的相互作用。结果表明:倾转旋翼尾流会与舰船脱落涡、甲板舷涡以及舰岛艉涡发生较强的"涡-涡干扰"现象,加大了耦合流场的湍流强度;舰船流场的低频非稳态特征会导致旋翼桨盘气动载荷发生显著的波动,不利于飞行操纵;垂直降落过程中,舰船甲板会形成"前低后高"的压力分布特征,倾转旋翼RMS气动载荷值也会明显增加,降低了着舰安全性,且右旋翼RMS气动载荷值比左旋翼平均大一倍以上,这也表明右旋翼面临着更加严峻的气动环境。  相似文献   

9.
直升机机动飞行旋翼的气动力模拟   总被引:5,自引:0,他引:5  
曹义华 《航空学报》1999,20(1):39-42
探讨了预测机动飞行旋翼气动力的细节问题。在考察非均匀诱速分布、入流动力学和非定常翼型性能的基础上,建立了一种模拟非定常旋翼气动力的新方法。对某一特定机动科目,首先由逆解技术得到操纵输入和飞行姿态;然后综合应用涡流理论、动力入流理论和非定常翼型气动模型来数值模拟非定常的旋翼气动力。通过样例分析给出了紧急转弯和平飞跃升的计算结果。  相似文献   

10.
发展了一套基于雷诺平均Navier-Stokes(RANS)方程的直升机/舰船耦合流场数值模拟方法,采用ROEMUSCL格式对交接面通量进行重构,并采用k-ε湍流模型以提高对涡流场的捕捉精度,直升机旋翼等旋转部件的模拟使用动量源模型。然后,以具有典型驱护舰结构的LPD-17及ROBIN直升机的组合为研究对象,从涡量场、速度场及压力场等方面分析了直升机、舰船耦合情形下的流场特征。研究表明,当来流速度V_∞≥4m/s时,舰船流场进入雷诺数自准区,流场速度无因次化量基本保持不变;直升机着舰时,旋翼会与舰船艉部的涡回流区以及甲板两侧的舷涡发生较强的"涡-涡干扰",在上述干扰以及舰面效应的共同作用下,旋翼拉力产生显著的振荡,并呈现出先减小、后增大的变化特征;当着舰位置向舰尾移动时,艉部回流区的影响减弱,旋翼拉力振荡幅度相应减小。最后,对全机状态下的耦合流场进行了模拟,结果显示机身和尾桨对舰艉流场的主要结构影响较小,可用旋翼/舰船耦合流场来进行直升机安全着舰分析,这将显著缩短计算时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号