首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Laboratory experiments that produced tholins in a simulated Titan atmosphere were conducted. We report the first systematic analyses of these compounds using Fourier-transform ion cyclotron resonance mass spectrometry. The findings suggest surprising simplicity and nonrandomness in the mass distribution and regularity in species clusters. The degree of unsaturation generally increased with increasing molecular weight in a predictable fashion, and nitrogen is proposed as the dominant carrier of unsaturation. In detected compounds with a general formula of C(x)H(y)N(z), the carbon to nitrogen ratio (x/z) varied only slightly within a narrow limit, and decreased with increasing molecular weights. These compounds are of potential prebiotic interest since they sediment to the surface of Titan, and would dissolve readily in transient aqueous pools that might be generated from time to time by impacts and volcanic  相似文献   

2.
Organic macromolecules ("complex tholins") were synthesized from a 0.95 N(2)/0.05 CH(4) atmosphere in a high-voltage AC flow discharge reactor. When placed in liquid water, specific water soluble compounds in the macromolecules demonstrated Arrhenius type first order kinetics between 273 and 313 K and produced oxygenated organic species with activation energies in the range of approximately 60+/-10 kJ mol(-1). These reactions displayed half lives between 0.3 and 17 days at 273 K. Oxygen incorporation into such materials--a necessary step toward the formation of biological molecules--is therefore fast compared to processes that occur on geologic timescales, which include the freezing of impact melt pools and possible cryovolcanic sites on Saturn's organic-rich moon Titan.  相似文献   

3.
With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.  相似文献   

4.
Titan, the largest satellite of Saturn, has a dense N2-CH4 atmosphere rich in organic compounds, both in gas and in aerosol phases. Its surface is probably covered by oceans of liquid methane-ethane mixtures, with many dissolved organics. This quasi planet appears as a natural laboratory to study chemical evolution toward complex organic systems in a planetary environment over a long time scale. With the Cassini-Huygens mission NASA and ESA will jointly send an orbiter (Cassini) around Saturn and a probe (Huygens) in the atmosphere of Titan. This mission, currently planned to be launched in 1996-1997 for a Saturn - Titan arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial organic processes. Consequently, it has important implications in the field of exobiology and the origins of life.  相似文献   

5.
Nitrile incorporation into Titan aerosol accompanying hydrocarbon chemistry is thought to be driven by extreme UV wavelengths (λ<120?nm) or magnetospheric electrons in the outer reaches of the atmosphere. Far UV radiation (120-200?nm), which is transmitted down to the stratosphere of Titan, is expected to affect hydrocarbon chemistry only and not initiate the formation of nitrogenated species. We examined the chemical properties of photochemical aerosol produced at far UV wavelengths, using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which allows for elemental analysis of particle-phase products. Our results show that aerosol formed from CH(4)/N(2) photochemistry contains a surprising amount of nitrogen, up to 16% by mass, a result of photolysis in the far UV. The proportion of nitrogenated organics to hydrocarbon species is shown to be correlated with that of N(2) in the irradiated gas. The aerosol mass greatly decreases when N(2) is removed, which indicates that N(2) plays a major role in aerosol production. Because direct dissociation of N(2) is highly improbable given the immeasurably low cross section at the wavelengths studied, the chemical activation of N(2) must occur via another pathway. Any chemical activation of N(2) at wavelengths >120?nm is presently unaccounted for in atmospheric photochemical models. We suggest that reaction with CH radicals produced from CH(4) photolysis may provide a mechanism for incorporating N into the molecular structure of the aerosol. Further work is needed to understand the chemistry involved, as these processes may have significant implications for how we view prebiotic chemistry on early Earth and similar planets.  相似文献   

6.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   

7.
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.  相似文献   

8.
RD Lorenz 《Astrobiology》2012,12(8):799-802
Abstract Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K. Key Words: Planetary protection-Planetary environments-Ice-Titan. Astrobiology 12, 799-802.  相似文献   

9.
Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300 degrees C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.  相似文献   

10.
Potential encore-mission scenarios have been considered for the Cassini mission. In this paper we discuss one of the end-of-life scenarios in which the Cassini spacecraft could perform a Saturn escape via gravity assists from Titan. It is shown that such satellite-aided escape requires a small deterministic maneuver (e.g., Δv<50 m/s), but provides enough energy for the Cassini spacecraft to reach a range of targets in our Solar System, as close to the Sun as the asteroid belt or as far as the Kuiper belt. The escape sequence could be initiated from an arbitrary point during the on-going Cassini mission. Example tours are presented in which the final Titan flyby places the spacecraft into ballistic trajectories that reach Jupiter, Uranus, and Neptune. After years of heliocentric flight, the spacecraft could impact on the target gas giant or perform a flyby to escape from the Solar System (if not to another destination). The concept can be generalized to a new kind of missions, including nested-grand tours, which may involve satellite-aided captures and escapes at more than one planet.  相似文献   

11.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   

12.
W J Rowe 《Acta Astronautica》1997,40(10):719-722
This hypothesis is that some crewmen on prolonged space flights may develop permanent myocardial injury despite the absence of coronary atherosclerosis and even without the hazards of radiation beyond orbit. This may resuIt from atrophy of skeletal muscle and bone resulting in magnesium ion deficiency predisposing to a vicious cycle with catecholamine elevations, with the latter aggravated by stress, dehydration-provoked angiotensin elevations, unremitting endurance exercise, and in turn a second vicious cycle with severe ischemia. Toxic free radicals can develop complicating ischemia and potential high radiation, with magnesium ion deficiency and high vascular catecholamines playing contributing roles. These free radicals may lead to inactivation of endothelium-derived relaxing factor (EDRF) causing coronary endothelial injury by a third vicious cycle, increased peripheral resistance and coronary vasospasm intensifying ischemia. Local and systemic thrombogenesis could contribute ultimately to focal fibrosis of the myocardium, if the ischemia is not recognized. Sufficient magnesium and time for repair are vital.  相似文献   

13.
Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in meteor spectra in an airborne experiment during the 2001 Leonid meteor storm. We found that the meteor's light-emitting air plasma, which included products of meteor ablation, contained less than 1 CN molecule for every 30 meteoric iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during meteor ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.  相似文献   

14.
The results of numerical simulation of the general circulation in the Titan’s atmosphere at heights from 0 to 250 km are presented, obtained using a new model based on numerical solution of complete equations of motion of viscous compressible gas at the temperature distribution given by an empirical model. The model uses no hydrostatic equation and, as compared with traditional models, has higher resolution in vertical and over horizon. The results presented differ from results of other models and agree with the vertical profile of the zonal component of wind velocity measured by the Huygens spacecraft. Interpretation of this profile is given, including its main peculiarity consisting in a nonmonotonic behavior at heights from 60 to 75 km.  相似文献   

15.
Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.  相似文献   

16.
Hage MM  Uhle ME  Macko S 《Astrobiology》2007,7(4):645-661
Small coastal ponds that contain photosynthetic microbial mat communities represent an extreme environment where a potentially significant source of labile organic carbon can be found within the McMurdo Dry Valleys, Antarctica. To distinguish coastal pond-derived organic matter from other sources of organic matter in the Dry Valleys, bulk organic carbon, nitrogen, and sulfur isotope signatures and phospholipid fatty acid (PLFA) profiles of benthic microbial mats located at two sites--Hjorth Hill coast and Garwood Valley--were investigated. The average isotope values at Hjorth Hill coast and Garwood Valley are, respectively, -10.9 per thousand and -10.2 per thousand for delta(13) C, 3.7 per thousand and -1.3 per thousand for delta(15)N, and 8.1 per thousand and 16.7 per thousand for delta(34)S. Microbial mats from all ponds are dominated by monounsaturated PLFAs (indicative of Gram-negative bacteria) and polyunsaturated PLFAs (indicative of microeukaryotes). Biomarkers specific to aerobic prokaryotes, eukaryotes, and photoautotrophic microeukaryotes, as well as sulfur-reducing bacteria, are present in all samples. Benthic mats at Garwood Valley are thicker and more laminated, have a higher biomass, and have a greater carbon and nitrogen content, which suggests greater productivity than mats at Hjorth Hill coast. Greater productivity is supported, as well, by higher dissolved oxygen contents likely derived from heightened photosynthetic productivity. More productivity at Garwood Valley likely results from a larger influx of terrestrial surface waters together with a concomitant nutrient loading.  相似文献   

17.
Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice   总被引:1,自引:0,他引:1  
We have discovered > 10(8) microbial cells/cm3 attached to clay grains in the bottom 13 m of the GISP2 (Greenland Ice Sheet Project) ice core. Their concentration correlates with huge excesses of CO2 and CH4. We show that Fe-reducing bacteria produce most of the excess CO2 and methanogenic archaea produce the excess CH4. The number of attached cells per clay grain is proportional to grain perimeter rather than to area, which implies that nutrients are accessed at grain edges. We conclude that Fe-reducing microbes immobilized on clay surfaces metabolize via "shuttle" molecules that transport electrons to grain edges, where they reduce Fe(III) ions at edges to Fe(II) while organic acid ions are oxidized to CO2. Driven by the concentration gradient, electrons on Fe(II) ions at grain edges "hop" to Fe(III) ions inward in the same edges and oxidize them. The original Fe(III) ions can then attach new electrons from shuttle molecules at the edges. Our mechanism explains how Fe-reducers can reduce essentially all Fe(III) in clay minerals. We estimate that the Fe(III) in clay grains in the GISP2 silty ice can sustain Fe-reducing bacteria at the ambient temperature of -9 degrees C for approximately 10(6) years. F420 autofluorescence imaging shows that > 2.4% of the cells are methanogens, which account for the excess methane.  相似文献   

18.
王磊  上官石  刘柏文  雷刚  陈强  厉彦忠 《宇航学报》2022,43(11):1566-1574
针对甲烷采用液氮过冷可能发生甲烷冰堵风险,提出了在甲烷中添加乙烷,制备凝固温度更低的甲烷-乙烷混合推进剂的新方案,搭建实验系统测试了甲烷-乙烷凝固温度变化规律。研究发现,随着甲烷含量提高,混合推进剂凝固温度先降低后升高。当甲烷、乙烷比例为0.71∶0.29时,混合推进剂达到最低凝固温度,约73.0 K。当采用常压饱和液氮对混合推进剂过冷时,控制甲烷含量在0.52~0.81间可避免推进剂冻结。相较于常压饱和甲烷,防冻结区的混合推进剂密度提高了24.0%~38.4%,液相存在温区增大至35.7 K~40.5 K。此外,甲烷-乙烷混合推进剂具有理论比冲高、再生冷却性能佳、结焦与积碳小等优势。所提出的甲烷-乙烷混合推进剂在火星探测等任务中具有可观的应用前景。  相似文献   

19.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   

20.
Titan is a very interesting target in deep space exploration. With its solid surface on which a rover can easily travel and its methane lakes which can be sailed it is the ideal target for a deep space mission which includes a mobile platform. In the present paper the general layout of a rover for a mission to Titan is studied, dealing with the mobility, power generation and trajectory control issues. A four-wheels configuration with slip steering was chosen; to compare this solution with the more conventional strategy based on steering wheels, simulations were performed on some trajectories computed through the well known ‘potential’ method, using both slip steering and conventional steering control, for different vehicle speeds. The comparison between the simulated trajectories allows to state the adequateness of the proposed approach.The results here obtained apply not only to a future mission to Titan, but also to other missions designed for the exploration of the satellites of the outer planets having a size comparable with that of Titan and the largest Kuiper belt objects like Pluto and 136472 Makemake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号