首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of optimal turn of a spacecraft from an arbitrary initial position to a final specified angular position in a minimum time is considered and solved. A case is investigated, when the constraint on spacecraft’s angular momentum during the turn is essential. Based on the quaternion method a solution to the posed problem has been found, and an optimal control program is constructed taking the constraints on controlling moment into account. The optimal control is found in the class of regular motions. A condition (calculation expression) is presented for determining the moment to begin braking with the use of measurements of current motion parameters, which considerably improves the accuracy of putting the spacecraft into a preset position. For a dynamically symmetrical spacecraft the solution to the problem of optimal control by the spacecraft spatial turn is presented in analytical form (expressions in elementary functions). An example of mathematical modeling of the spacecraft motion dynamics under optimal control over reorientation is given.  相似文献   

2.
Levskii  M. V. 《Cosmic Research》2004,42(4):414-426
The problem of optimal control of a three-dimensional turn of a spacecraft is considered and solved. The turn is performed from an initial angular position into the required final angular position in a specified time and with a minimum value of the functional that represents the degree of loading of the construction. An analytical solution to the formulated problem is presented. It is demonstrated that the optimal (in this sense) control of the spacecraft reorientation can be determined in the class of a regular precession executed by the spacecraft. The instant when braking begins is determined based on the principles of terminal control using the actual kinematical parameters of the spacecraft motion, which substantially increases the accuracy of transferring the spacecraft to a specified position. Data of mathematical modeling are also presented that confirm the efficiency of the described method of controlling the spacecraft's three-dimensional turn.  相似文献   

3.
The problem of optimal control over spatial reorientation of a spacecraft is considered. The functional having a sense of propellant consumption is minimized. The analytical solution to the formulated problem is presented. It is shown that the optimal solution can be found in the class of two-impulse control at which the spacecraft’s turn is performed along a free motion trajectory. In order to improve the accuracy of spacecraft guidance into a specified angular position, methods of control are suggested that realize the method of free trajectories. The synthesized controls are invariant with respect to both external perturbations and parametric errors. The results of mathematical modeling are presented that demonstrate high efficiency of developed control algorithms. Propellant consumption for realizing a programmed turn is numerically estimated taking into account considerable gravitational and aerodynamic moments acting upon the spacecraft.  相似文献   

4.
王辉  徐瑞  朱圣英  梁子璇 《宇航学报》2020,41(11):1424-1433
针对姿态指向受限以及角速度和控制力矩有界等复杂多约束下航天器低能量姿态机动规划问题,首先提出了时-虚混合域的概念,即时域和虚拟域同步存在并且同步求解虚拟域姿态路径以及时域角速度和控制力矩。进一步地,建立时-虚混合域上非线性约束问题模型。然后,提出了时-虚混合域单点式非线性姿态机动规划方法,通过非线性参数优化和单点式路径分解置换规划求解得到姿态机动轨迹以及角速度和控制力矩曲线。仿真结果表明,该方法可以高效地解决多约束姿态机动规划问题,有效地降低姿态机动过程中的能量消耗,得到连续光滑的姿态机动规划结果。  相似文献   

5.
连续力矩作用下的柔性航天器再定向与振动抑制   总被引:2,自引:0,他引:2  
研究带两帆板航天器的三维再定向与振动抑制问题,执行机构为反作用轮。建立了柔性空间飞行器三轴耦合姿态动力学模型和四元数姿态运动学模型,建模时考虑了帆板的弯曲变形和扭转变形。采用拟欧拉角及角速度作为反馈信号,设计了一种PD控制律。该控制律可以用于对任意目标姿态的再定向而形式保持不变。用Lyapunov方法证明了姿态的渐进稳定性和模态振动和衰减性。非线性闭环系统的仿真结果验证了所设计控制律不仅能够使航天  相似文献   

6.
The problem of optimal (with minimum value of the path functional) control over a spatial reorientation of a spacecraft is considered. Using the quaternion method, an analytical solution to this problem is obtained. For the symmetrical optimality index, the complete solution to the problem of spacecraft reorientation is represented in a closed form. The results of mathematical modeling of the spacecraft motion dynamics are presented, demonstrating the practical efficiency of the developed algorithm of control.  相似文献   

7.
This report deals with the problems of synthesizing algorithms for controlling the attitude manoeuver of a transport spacecraft aimed at injecting the spacecraft into a closed terminal domain of “heading-range” phase coordinates which makes it possible to descend to the landing aerodrome region in accordance with a spiral trajectory tracking pattern. The descent trajectory is controlled by changing the roll angle. The principal distinguishing feature of the suggested method of transport spacecraft lateral motion control resides in guiding the spacecraft to a terminal curve and in providing an automatic transfer from roll control to interacting control of roll angle and angle of attack. The performance of the control algorithm under transient conditions are considered in detail.Algorithms controlling the longitudinal range by varing the magnitude of the roll angle and lateral range by selecting the respective sign of the roll control angle are thereafter synthesized separately. The major problem in designing the angular motion control system of transport spacecraft is the development of a high-rate roll axis turn control algorithm. To ensure high accuracy of lateral manoeuvering of the spacecraft it is expedient to accomplish the spacecraft reorientation in roll in a minimum time. It is therewith necessary to take into account with the sideslip angle limitation associated with the need of complying the design conditions of the spacecraft flowaround and with the spacecraft skin selected temperature conditions. It is expected that the total side slip angle is acceptable for measurement. Within the greater portion of the descent trajectory constant-thrust jet-reaction control engines are employed as actuators. Therefore, together with the high speed of response developed control algorithm provides an adequate efficiency of the system from the viewpoint of fuel consumption. The possibilities offered by the suggested algorithms controlling the lateral motions of the center of masses and around the center of masses during the descent stage and in the course of landing approach manoeuvering are illustrated by an example considering a hypothetical transport spacecraft featuring variable aerodynamics and a low frequency of natural oscillations of the angular motion loop. The suggested algorithms make it possible to fully employ the transport spacecraft maneuverability and to meet the terminal heading and velocity requirements within a wide class of disturbances.  相似文献   

8.
针对失稳目标捕获后航天器组合体的位姿调整与稳定问题,提出一种组合体角动量转移与振动抑制复合规划方法。首先建立了同时考虑了空间机械臂、目标卫星太阳翼、服务卫星太阳翼等柔性构件的航天器组合体动力学模型。然后提出角动量转移优化方法,规划机械臂最终构型,保证组合体相对稳定后的角速度最小;基于粒子群算法设计了机械臂最优抑振轨迹规划方法,抑制角动量转移过程中的机械臂和太阳翼的柔性振动。最后通过数值仿真验证了规划方法的有效性。仿真结果表明,该方法能够有效实现组合体的角动量转移,并显著降低组合体的柔性振动,具有工程实用性。  相似文献   

9.
Impulsive control for angular momentum management of tumbling spacecraft   总被引:1,自引:0,他引:1  
《Acta Astronautica》2007,60(10-11):810-819
We discuss an angular momentum control of a tumbling spacecraft. The proposed control method is to apply an impulse by a space robot arm, to measure and control the relative position and attitude between the target spacecraft, and then to apply another impulse until the rotational motion of the target spacecraft is well damped. A discrete controller is designed using the simplified equations of rotational motion through appropriate coordinate transformation. The stationary response under contact model uncertainty is investigated and stability condition is analytically derived. Numerical simulations are given to validate the proposed approach.  相似文献   

10.
Pointing control of spacecraft using two SGCMGs via LPV control theory   总被引:1,自引:0,他引:1  
In this paper, we consider a pointing control of a spacecraft using two single-gimbal control moment gyros (SGCMGs). Our pointing control problem is to make the line-of-sight of a camera or an antenna that is fixed on a body axis aim along a desired direction. To solve this problem, we first state the control objective for the pointing control through the angular momentum conservation principle. Then, we develop a gain-scheduled (GS) controller via linear parameter-varying (LPV) control theory. Finally, the feasibility of the proposed control method is shown by a numerical simulation.  相似文献   

11.
航天器星敏感器自主定位方法及精度分析   总被引:13,自引:4,他引:13  
杨博 《宇航学报》2002,23(3):81-84
用星敏感器和地平仪测量星光与地平之间的“星光抑角”为观测量,利用推广卡尔曼滤波方法实时估计航天器的最佳位置,使航天器在失去地面遥控的情况下,能够自主准确地确定运行轨道。由于航天器自主定位系统在工作期间会受到硬、软件等诸多因素的影响,因而使其定位精度达不到预计要求。在此我们通过大量仿真计算,指出一些对自主定位系统精度影响较大的因素,并对它们进行了比较分析。  相似文献   

12.
庞博  李果  黎康  汤亮 《宇航学报》2020,41(4):464-471
针对挠性卫星姿态敏捷机动中,挠性模态和星体转动惯量不确知,进而影响前馈补偿的有效性的问题,提出一种将非线性状态观测器和转动惯量辨识相结合的精确补偿控制方法。证明了一般挠性卫星动力学的非线性项满足Lipschtiz条件,可引入非线性观测器,实现了挠性模态的准确估计。设计了一种基于角速度最优阶拟合的转动惯量校正方法,进一步提高前馈补偿的精度和姿态机动的快速性。数学仿真对比结果表明:本文所提的精确补偿控制方法,能够有效减少挠性附件振动和转动惯量不准确对姿态控制的影响,提高姿态控制的响应速度,满足挠性卫星机动过程的快速性和稳定性,适用于挠性卫星的姿态敏捷机动控制。  相似文献   

13.
Compared to traditional docking systems, spacecraft docking with inter-satellite electromagnetic mechanism has distinct advantages. However, its 6-DOF control problem has not been adequately investigated. From our knowledge, this paper attempts to study the 6-DOF control problem for the first time. Based on the far-field electromagnetic force model and Hill's model, the dynamic model of translational motion is derived; using tracking control strategy, LQR method and estimate of Extended State Observer (ESO), an optimal and robust translational controller is designed to satisfy relative position/velocity requirements of soft docking. Representing the attitude of the docking spacecraft pair by unit quaternion, the attitude dynamic and kinematic models with quaternion expression are derived; using behavior-based coordinated control approach and ESO, a decentralized attitude controller is designed to simultaneously align one spacecraft with its absolute desired attitude and with the other spacecraft of the docking pair, requiring no angular velocity measurement and exhibiting better robust capability. The feasibility and performance of this proposed 6-DOF controller are validated by theoretical deduction and simulation results.  相似文献   

14.
15.
利用动量交换装置的角动量测量和反馈来实现带有挠性附件卫星姿态的稳定控制是一个重要问题。为此,本文给出了角动量反馈控制器,指出了控制器参数的选取方法,分析了姿态控制误差与角动量测量误差的关系。结果表明,角动量反馈控制方法不仅能够保证姿态控制的稳定性,而且能够有效提高姿态控制的稳定性,并且对不确定挠性模态参数具有很强的鲁棒性。  相似文献   

16.
《Acta Astronautica》2007,60(8-9):684-690
The optimal attitude control problem of spacecraft during the stretching process of solar wings is investigated in this paper. The dynamical equations of the nonholonomic system are derived from the conservation principle of the angular momentum of the multibody system. Attitude control of the spacecraft with internal motion is reduced to a nonholonomic motion planning problem. The spacecraft attitude control is transformed into the steering problem for a drift free control system. The optimal solution for steering a spacecraft with solar wings is presented. The controlled motion of spacecraft is simulated for two cases. The numerical results demonstrate the effectiveness of the optimal control approach.  相似文献   

17.
张洪华  王芳 《宇航学报》2011,32(7):1491-1501
研究欠驱动挠性航天器的单轴指向控制问题,该问题理论上涉及高维控制系统的非线性控制
,工程上对于航天器配置优化和提高控制系统可靠性非常重要。为此,提出了两段控制方法
:第一段是角速度镇定,第二段是在初始角速度为小量时的单轴指向控制。在此基础上,将
两段控制结合提出了完整的单轴指向控制算法,该算法能够有效保证闭环控制系统的大范围
渐近稳定性。理论分析和仿真结果验证了所提出控制方法的有效性。  相似文献   

18.
Kenshov  E. A.  Timbai  I. A. 《Cosmic Research》2004,42(3):283-288
The motion of a spacecraft with small asymmetry relative to its center of mass is considered. The restoring aerodynamic moment of the spacecraft is described by the Fourier series in terms of the angle of attack with the two first sinusoidal and the first cosinusoidal terms. A solution for the angle of attack in the undisturbed rotational motion is found. The analytical expression is obtained for the integral of action taken along the separatrices that separate the rotational and oscillatory regions of the phase portrait of a system. The transition of the spacecraft's motion from planar rotational to oscillatory is investigated. This transition is caused by a slow variation of moment characteristic coefficients, as well as by the presence of small asymmetry and damping and slow variation of their coefficients. Analytical formulas are obtained for determining the times of transition from rotational to oscillatory motion, as well as for the critical angular velocity of beyond-the-atmosphere rotation. When this critical velocity is exceeded, body rotation proceeds for a long time interval (planar autorotation arises).  相似文献   

19.
针对机动观测平台单目光学成像系统的特点,在不能测定目标飞行器位置和速度的前提下,通过对成像系统与空间飞行器空间关系的分析,提出了视平均运动角速度与真平均运动角速度的概念,并构建了关于二者的约束方程,实现了基于测角数据的观测斜距的估计,从而解算出定轨所需的初始状态参数。基于观测斜距估计的轨道确定方法把对空间飞行器的定轨问题,归结为根据图像序列计算目标测角和根据测角数据确定观测斜距,解决了利用空间单目光学成像数据的定轨问题,并以高轨卫星为实例对定轨精度进行了仿真验证。  相似文献   

20.
宋道喆  耿云海  易涛 《宇航学报》2016,37(6):729-736
研究轮控式零角动量欠驱动航天器姿态最优稳定控制问题。考虑到该类型航天器不存在定常光滑稳定控制律的特点,通过Lyapunov直接法和Backstepping方法设计了一种非线性不连续反馈控制律,同时得到控制Lyapunov函数(CLF),并由此得到逆最优稳定控制律。该控制律可以避开求解Hamilton-Jacobi方程,最小化某一代价函数,同时具有扇形稳定裕度,对输入不确定性具有一定的鲁棒性。数学仿真结果表明,所设计的非线性不连续反馈控制律能够使姿态渐近稳定至平衡点,并具有最优性,以及在转动惯量存在不确定性时,扇形稳定裕度使系统具有一定的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号