首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dst是一个表征磁暴强度的空间天气指数. 通过统计1957-2008年 发生的中等磁暴(-100<Dst≤ -50nT)和强磁暴(Dst ≤ -100nT)在太阳活动周上升年、极大年、下降年和极小年的时间分布情 况, 分析其随季节变化的统计特性, 进而讨论了引起磁暴的原因. 结果表明, 对于同一太阳活动周, 极大年地磁暴发生次数远大于极小年地磁暴的发生次数, 这与太阳黑子数的变化趋势是一致的; 通常太阳活动周强磁暴出现双峰结构, 而第23周中等磁暴出现双峰结构, 强磁暴则出现三峰结构, 这可能与1999 年强 磁暴发生次数异常少, 使1998年凸显出来的现象有关; 磁暴主要发生在分季, 随着Dst指数的增加, 磁暴发生次数明显增加.   相似文献   

2.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

3.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

4.
用银河宇宙线判定几个引起特大磁暴CME的运动方向   总被引:1,自引:0,他引:1  
利用位于南北极尖区位置的McMurdo和Thule台站的宇宙线强度的观测数据,分析了几个引起特大磁暴CME的来向.分析结果表明,所选的与4个特大磁暴相关的CME基本是朝正对磁层顶的方向运动并与磁层作用的.通过对引起第23周两个特大磁暴的CME特征分析对照,发现CME的来向是影响磁暴强弱的一个因素.同样条件下,运动方向偏向地球一侧的CME引起的磁暴比正对地球的CME引起的磁暴要弱。  相似文献   

5.
We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field variability in quiet geomagnetic conditions is caused by the discrepancy of the geographic and magnetic poles and by the spatial anomalies of different scales in the main magnetic field of the Earth. Variations of ionospheric parameters are shown to exhibit a pronounced longitudinal inhomogeneity with changing geomagnetic conditions. This inhomogeneity is associated with the longitudinal features of background and disturbed structure of the geomagnetic field. During the recovery phase of a storm, important role in dynamics of the mid-latitude ionosphere may belong to wave-like thermospheric disturbances of molecular gas, propagating westward for several days. Therefore, it is necessary to extend the time interval for studying the ionospheric effects of strong magnetic storms by a few days after the end of the magnetospheric source influence, while the disturbed regions in the thermosphere continues moving westward and causes the electron density decrease along the trajectories of propagation.  相似文献   

6.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

7.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

8.
The study investigated the effects of intense geomagnetic storms of 2015 on the occurrences of large scale ionospheric irregularities over the African equatorial/low-latitude region. Four major/intense geomagnetic storms of 2015 were analyzed for this study. These storms occurred on 17th March 2015 (?229?nT), 22nd June 2015 (?204?nT), 7th October 2015 (?124?nT), and 20th December 2015 (?170?nT). Total Electron Content (TEC) data obtained from five African Global Navigation Satellite Systems (GNSS) stations, grouped into eastern and western sectors were used to derive the ionospheric irregularities proxy indices, e.g., rate of change of TEC (ROT), ROT index (ROTI) and ROTI daily average (ROTIAVE). These indices were characterized alongside with the disturbance storm time (Dst), the Y component of the Interplanetary Electric Field (IEFy), polar cap (PC) index and the H component of the Earth’s magnetic field from ground-based magnetometers. Irregularities manifested in the form of fluctuations in TEC. Prompt penetration of electric field (PPEF) and disturbance dynamo electric field (DDEF) modulated the behaviour of irregularities during the main and recovery phases of the geomagnetic storms. The effect of electric field over both sectors depends on the local time of southward turning of IMF Bz. Consequently, westward electric field inhibited irregularities during the main phase of March and October 2015 geomagnetic storms, while for the June 2015 storm, eastward electric field triggered weak irregularities over the eastern sector. The effect of electric field on irregularities during December 2015 storm was insignificant. During the recovery phase of the storms, westward DDEF suppressed irregularities.  相似文献   

9.
We briefly present the selected results obtained up to now by the Russian scientific groups regarding powerful solar ejections as main causes of large geomagnetic storms in the near-Earth space. Strongest perturbations on the Sun and in the near-Earth space responsible for large geomagnetic storms were well registered and analyzed during the 23rd solar cycle. Open issues and perspectives are discussed.  相似文献   

10.
Intense geomagnetic storms (Dst < −100 nT) usually occur when a large interplanetary duskward-electric field (with Ey > 5 mV m−1) lasts for more than 3 h. In this article, a self-organizing map (SOM) neural network is used to recognize different patterns in the temporal variation of hourly averaged Ey data and to predict intense storms. The input parameters of SOM are the hourly averaged Ey data over 3 h. The output layer of the SOM has a total of 400 neurons. The hourly Ey data are calculated from solar wind data, which are provided by NSSDC OMNIWeb and ACE spacecraft and contain information on 143 intense storms and a fair number of moderate storms, weak storms and quiet periods between September 3, 1966 and June 30, 2002. Our results show that SOM is able to classify solar wind structures and therefore to give timely intense storm alarms. In our SOM, 21 neurons out of 400 are identified to be closely associated with the intense storms and they successfully predict 134 intense storms out of the 143 ones selected. In particular, there are 14 neurons for which, if one or more of them are present, the occurrence probability of intense storms is about 90%. In addition, several of these 14 neurons can predict big magnetic storm (Dst  −180 nT). In summary, our method achieves high accuracy in predicting intense geomagnetic storms and could be applied in space environment prediction.  相似文献   

11.
Times of sustained strong northward IMF can interrupt the magnetic storm development and lead to lower levels of geomagnetic activity for many hours. During 1997–2000 we have found two events of this kind observed on November 8, 1998 and October 13, 2000. In both cases, the storms started as usual after arrival of ejecta with a southward IMF component from the Sun to the Earth, but ceased after several hours due to the onset of sustained northward IMF leading to the faster recovery process. After the passage of this so-called positive domain, the storm development started again. The heliospheric magnetic field intensity remained enhanced and nearly constant. The solar origins of the geomagnetic storm interruptions have been investigated. Tentatively they may be related to strong nonlinear Alfvйn type solitary waves excited by non-stationary coronal current variations with a characteristic time-scale of about a day.  相似文献   

12.
辐射带高能电子通量波动与地磁暴警报   总被引:1,自引:1,他引:0  
地球磁场捕获带电粒子形成辐射带,地磁场的扰动将导致带电粒子通量的变化.根据磁暴期间外辐射带高能电子通量起伏和波动的特点及规律,利用GOES卫星实时发布的5min分辨率高能电子微分通量数据,构建了高能电子通量波动指数,并分析了该指数与地磁活动的关系.结果表明,所提出的高能电子通量波动指数与地磁事件有很好的相关性,能起到地磁暴发生的指示剂作用,相对于目前空间环境业务化预报过程中广泛使用的3hKp指数,高能电子通量波动指数能更早地警报地磁暴的发生,是潜在有效的地磁暴警报辅助手段,能为空间环境预报中的地磁暴实时警报提供重要参考.   相似文献   

13.
It is well known that during many but not all of the geomagnetic storms enhanced fluxes of high-energy electrons are observed in the outer radiation belt. Here we examine relativistic (>2 MeV) electron fluxes measured by GOES at the synchronous orbit and on-ground observations of two types of ULF pulsations during 30 magnetic storms occurred during 1996–2000. To characterize the effectiveness of the chosen magnetic storms in producing relativistic electron fluxes, following to (Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.R. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, doi:10.1029/2002GL016513, 2003), we calculate a ratio of the maximum daily-averaged electron flux measured during the recovery phase, to the mean pre-storm electron flux. A storm is considered an effective one if its ratio exceeds 2. We compare behavior of Pi1 and Pc5 geomagnetic pulsations during effective and non-effective storms and find a tendency for a storm efficiency to be higher when the mid-latitude Pi1 pulsations are observed for a long time during the magnetic storm main phase. We note also that the prolonged powerful Pc5 pulsation activity during the recovery phase of a magnetic storm is the necessary condition for the storm effectiveness. To interpret the found dependences, we suggest that there are two prerequisites for generating relativistic electron populations during a storm: (1) the availability of seed electrons in the magnetosphere, and Pi1 emissions are indicators of the mid-energy electron interaction with the ionosphere and (2) acceleration of the seed electrons to MeV energies, and interaction of electrons with the MHD wave activity in the Pc5 range is one of the most probable mechanisms proposed in the literature for this purpose.  相似文献   

14.
空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、Kp及Ap指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。  相似文献   

15.
本文论述过去十年中,在英国Aberystwyth城观测同步卫星Intelsat IIF2和SIRIO信标时获得的大西洋比斯开湾上空电子总量对磁暴的响应。所选择的地磁-电离层暴分属前后两个太阳活动较高周期,主要集中在春秋分阶段和冬夏至阶段。文中指出,春分期间连续型磁暴使TEC在正相效应之后出现加长的凋落周期,集中型磁暴导致TEC在正相之后产生凋落周期缩短;春秋分和冬夏至时磁暴伴生的电子总量形态受制于急始时刻与次数、磁暴主相、磁暴指数(即暴时位置和暴情指数)等因素。   相似文献   

16.
Seventeen severe magnetic storms occurred in the period 2000 through 2005. In addition there was a major magnetic storm in March 1989. During each of these storms there was an anomaly in the operation of the system of Signalization, Centralization and Blockage (SCB) in some divisions of the high-latitude (∼58 to 64°N) Russian railways. This anomaly was revealed as false traffic light signals about the occupation of the railways. These signals on the Northern railways appeared exactly during the main phases of the strongest part of the geomagnetic storms characterized by high geomagnetic indices Dst and Kp (Ap). Moreover, the durations of these anomalies coincided with the period of the greatest geomagnetic disturbances in a given event. Geomagnetically induced currents (GICs) during significant strengthening of geomagnetic activity are concluded as the obvious reasons for such kind of anomalies.  相似文献   

17.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   

18.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

19.
利用宇宙线中子探测数据定性分析了地面宇宙线多台站之间的相互联系以及大磁暴与宇宙线之间的响应关系. 以Irkutsk和Oulu宇宙线台站为例, 运用小波去噪技术提高数据的稳定性. 结果表明, 相同世界时条件下, 两站宇宙线通量相关性在事件发生时较高; 而相同地方时条件下, 相关性则在平静期较高. 进一步采用相同地方时条件对不同宇宙线台站的通量在平静期和扰动期的相对变化进行分析, 选取2004年7月强地磁暴典型事例进行直观分析, 发现大地磁暴前Irkutsk和Oulu台站的宇宙线相对通量发生明显差异, 可以尝试作为强地磁暴宇宙线先兆特征. 通过对2001年3月至2005年5月的强磁暴和中强磁暴进行统计, 得到与强地磁暴相关的适当宇宙线相对差异阈值. 将得到的阈值对2005年9月至2011年12月所有强磁暴及中强磁暴进行验证, 总成功率达到87.5%, 误报率为35.7%, 结果较好.   相似文献   

20.
Upper atmospheric densities during geomagnetic storms are usually poorly estimated due to a lack of clear understanding of coupling mechanisms between the thermosphere and magnetosphere. Consequently, the orbit determination and propagation for low-Earth-orbit objects during geomagnetic storms have large uncertainties. Artificial neural networks are often used to identify nonlinear systems in the absence of rigorous theory. In the present study, an attempt has been made to model the storm-time atmospheric density using neural networks. Considering the debate over the representative of geomagnetic storm effect, i.e. the geomagnetic indices ap and Dst, three neural network models (NNM) are developed with ap, Dst and a combination of ap and Dst respectively. The density data used for training the NNMs are derived from the measurements of the satellites CHAMP and GRACE. The NNMs are evaluated by looking at: (a) the mean residuals and the standard deviations with respect to the density data that are not used in training process, and (b) the accuracy of reconstructing the orbits of selected objects during storms employing each model. This empirical modeling technique and the comparisons with the models NRLMSIS-00 and Jacchia-Bowman 2008 reveal (1) the capability of neural networks to model the relationship between solar and geomagnetic activities, and density variations; and (2) the merits and demerits of ap and Dst when it comes to characterizing density variations during storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号