首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets.  相似文献   

2.
Evidence suggests that changes of solar irradiance in recent centuries have provided a significant climate forcing and that the sun has been one of the principal causes of long-term climate change. During the past two decades the solar forcing has been much smaller than the climate forcing caused by increasing greenhouse gases. But it is incorrect to assume that the sun necessarily will be an insignificant player in climate change of the 21st century. Indeed, I argue that moderate success in curtailing the growth of anthropogenic climate forcings could leave the sun playing a pivotal role in future climate change.  相似文献   

3.
Haarsma  R.J.  Drijfhout  S.S.  Opsteegh  J.D.  Selten  F.M. 《Space Science Reviews》2000,94(1-2):287-294
The impact of variations in solar irradiance on the variability of climate is still a topic of debate. Herein we assess the response of a coupled General Circulation Model (GCM) of intermediate complexity to an estimate of the solar variability since 1700 and to a series of idealized sinusoidal solar forcings. On the continental to global scale and averaged over periods longer than 30 years, the solar-induced variability dominates internal variability in the annual global mean surface air temperature. Locally and on the regional scale, the internal variability dominates. The dominant patterns of natural variability and explained variance are not affected by a variable solar forcing, the spectra however are sensitive. The control run shows a preferred decadal time scale of 18 year in a sea surface temperature mode associated with the North Atlantic Oscillation. The preferred decadal time scale disappears for a variable solar forcing. This is caused by small changes in oceanic circulation resulting in subsurface oceanic modes with modified structure and time scale.  相似文献   

4.
Venus and Titan are both slowly-rotating, approximately Earth-sized bodies with cloudy, dynamic atmospheres. Each has a complex climate system, even less well understood than the terrestrial equivalent, and the processes that appear to maintain the climate near the surface on both bodies have interesting similarities and differences with each other and with the Earth. By considering these factors and their possible evolution with the aid of elementary climate models, some interesting, albeit tentative, conclusions can be reached concerning the stability of climate on Earth-like planets, and the likely nature of past and future climate change.  相似文献   

5.
Shine  Keith P. 《Space Science Reviews》2000,94(1-2):363-373
Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.  相似文献   

6.
K. Kodera 《Space Science Reviews》2006,125(1-4):319-330
This paper reviews the solar influence on climate through stratospheric dynamical processes. There are two possible processes, both being a consequence of the wave-mean flow interaction in the upper stratosphere. One involves changes in the vertical propagation of planetary waves and the resultant tropospheric circulation change in the extratropics of the winter hemisphere. The other involves change in the global meridional circulation in the stratosphere and associated convective activity change in the tropics. These processes have been discussed on an 11-year solar cycle, but they are also applicable for centennial-scale solar influence on climate.  相似文献   

7.
The climate impact of cryoplanes (i.e. hydrogen-powered aircraft) is estimated in terms of radiative forcing (RF). We compare two scenarios: the conventional (i.e. kerosene-powered aircraft) scenario assumes a growth of the fleet until 2015 and a constant fleet thereafter. In the cryoplane scenario, the whole conventional fleet is instantaneously replaced by cryoplanes in 2015 and does not change thereafter. The resulting direct and indirect effects of aircraft emissions of H2O (direct RF and RF due to contrails) and NOx (RF due to O3 production and CH4 destruction), as well as aviation-induced atmospheric CO2 are investigated for both scenarios.Whereas in case of conventional air traffic the components CO2, O3, CH4 and contrails cause a similar RF, in case of cryoplanes, contrails are by far the most climatic relevant component. In 2015, total RF due to the cyoplane scenario is larger than total RF due to the conventional scenario. This changes with time and in 2100 the climate impact due to the cryoplane scenario is smaller. Due to large uncertainties regarding the optical properties of cryoplane contrails, the RF of contrails, and the impact of aviation on `natural' cirrus, our present knowledge is not sufficient to decide whether a substitution of the conventional fleet by a fleet of cryoplanes is of environmental benefit. Further research is necessary in order to faciliate a more precise approach to this question.  相似文献   

8.
《Air & Space Europe》2000,2(3):29-33
Although gaseous emissions from aircraft represent only a small fraction of all man made emissions, they may have particular significance because they are delivered directly into the upper atmosphere. This paper describes some research investigations of the effects of aircraft emissions and reviews the impact of those effects upon global climate.  相似文献   

9.
Numerous attempts have been made over the years to link various aspects of solar variability to changes in the Earth's climate. There has been growing interest in this possible connection in recent years, spurred largely by the need to understand the natural causes of climate change, against which the expected global warming due to man's activities will have to be detected. The time scale of concern here is that of decades to centuries, and excludes the longer millennial scale in which orbital variations play a dominant role. The field has long been plagued by the lack of an acceptable physical mechanism by which solar variability can affect climate, but the discovery of variability in the Sun's total irradiance (the solar ``constant' of meteorology) by spacecraft instruments has pointed to a direct mechanism. Other less direct mechanisms that have been suggested involve variations in the Sun's ultraviolet flux and in the plasma outflow of the solar wind. The purpose of this paper is to summarize the current state of the field, emphasizing the proposed mechanisms as an introduction to the more detailed papers that follow. The particular case of sea-surface temperature data will be used as an illustration.  相似文献   

10.
Solanki  S.K.  Fligge  M. 《Space Science Reviews》2000,94(1-2):127-138
Accurate measurements of solar irradiance started in 1978, but a much longer time series is needed in order to uncover a possible influence on the Earth's climate. In order to reconstruct the irradiance prior to 1978 we require both an understanding of the underlying causes of solar irradiance variability as well as data describing the state of the Sun (in particular its magnetic field) at the relevant epochs.Evidence is accumulating that on the time-scale of the solar cycle or less, variations in solar irradiance are produced mainly by changes in the amount and distribution of magnetic flux on the solar surface. The main solar features contributing to a darkening of the Sun are sunspots, while active-region faculae and the network lead to a brightening. There is also increasing evidence for secular changes of the solar magnetic field and the associated of solar brightness variability. In part the behavior of sun-like stars is used as a guide of such secular changes.Under the assumption that solar irradiance variations are due to solar surface magnetism on all relevant time scales it is possible to reconstruct the irradiance with some reliability from today to around 1874, and with lower accuracy back to the Maunder minimum. One major problem is the decreasing amount and accuracy of the relevant data with age. In this review the various reconstructions of past solar irradiance are presented and the assumptions underlying them are scrutinized.  相似文献   

11.
The nature of the climatic response to solar forcing and its geographical coherence is reviewed. This information is of direct relevance for evaluating solar forcing mechanisms and validating climate models. Interpretation of Sun-climate relationships is hampered by difficulties in (1) translating proxy records into quantitative climate parameters (2) obtaining accurate age assessments (3) elucidating spatial patterns and relationships (4) separating solar forcing from other forcing mechanisms (5) lacking physical understanding of the solar forcing mechanisms. This often limits assessment of past solar forcing of climate to identification of correlations between environmental change and solar variability. The noisy character and often insufficient temporal resolution of proxy records often exclude the detection of high frequency decadal and bi-decadal cycles. However, on multi-decadal and longer time scales, notably the ∼90 years Gleisberg, and ∼200 years Suess cycles in the 10Be and 14C proxy records of solar activity are also well presented in the environmental proxy records. The additional ∼1500 years Bond cycle may result from interference between centennial-band solar cycles. Proxy evidence for Sun-climate relations is hardly present for Africa, South America and the marine realm; probably more due to a lack of information than a lack of response to solar forcing. At low latitudes, equatorward movement of the ITCZ (upward component of the Hadley cell) occurs upon a decrease in solar activity, explaining humidity changes for (1) Mesoamerica and adjacent North and South American regions and (2) East Africa and the Indian and Chinese Monsoon systems. At middle latitudes equatorward movement of the zonal circulation during solar minima probably (co-)induces wet and cool episodes in Western Europe, and Terra del Fuego as well as humidity changes in Southern Africa, Australia, New Zealand and the Mediterranean. The polar regions seem to expand during solar minima which, at least for the northern hemisphere is evident in southward extension of the Atlantic ice cover. The forcing-induced migration of climate regimes implies that solar forcing induces a non linear response at a given location. This complicates the assessment of Sun-climate relations and calls for nonlinear analysis of multiple long and high resolution records at regional scale. Unfortunately nonlinear Sun-climate analysis is still a largely barren field, despite the fact that major global climate configurations (e.g. the ENSO and AO) follow nonlinear dynamics. The strength of solar forcing relative to other forcings (e.g. volcanism, ocean circulation patterns, tides, and geomagnetism) is another source of dynamic responses. Notably the climatic effects of tides and geomagnetism are hitherto largely enigmatic. Few but well-dated studies suggest almost instantaneous, climatic deteriorations in response to rapid decreases in solar activity. Such early responses put severe limits to the solar forcing mechanisms and the extent of this phenomenon should be a key issue for future Sun-climate studies.  相似文献   

12.
Norris  Joel R. 《Space Science Reviews》2000,94(1-2):375-380
Clouds have a large impact on the Earth's radiation budget and hence have the potential to exert strong feedbacks on climate variability and climate change. These feedbacks are not well-understood, so it is essential to investigate observed relationships between cloud properties and other parameters of the climate system. Suitable cloud datasets based on surface observations and satellite observations are described and various advantages and disadvantages of each are discussed. In particular it is noted that significant inhomogeneities likely exist in the datasets which have important implications for studies of climate variability. Recommendations are made for the use of cloud data in future investigations.  相似文献   

13.
Stott  P.A.  Tett  S.F.B.  Jones  G.S.  Allen  M.R.  Ingram  W.J.  Mitchell  J.F.B. 《Space Science Reviews》2000,94(1-2):337-344
We analyse spatio-temporal patterns of near-surface temperature change to provide an attribution of twentieth century climate change. We apply an ``optimal detection' methodology to seasonal and annual data averaged over a range of spatial and temporal scales. We find that solar effects may have contributed significantly to the warming in the first half of the century although this result is dependent on the reconstruction of total solar irradiance that is used. In the latter half of the century, we find that anthropogenic increases in greenhouses gases are largely responsible for the observed warming, balanced by some cooling due to anthropogenic sulphate aerosols, with no evidence for significant solar effects.  相似文献   

14.
Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.  相似文献   

15.
It has been thought for a long time that the luminosity of the Sun has remained constant since the Sun evolved into the Main Sequence stage almost 4.5 billion yr ago. However, many of recent data obtained from the isotopic analyses in the tree rings, meteoritic and lunar samples have shown that the luminosity and the activity of the Sun must have been varied for such long years. It seems that the one of the most important discoveries on the variability of the Sun is that of the Maunder Minimum (1645–1715), during which the solar activity had been extremely weak so that no sunspot had been observed for almost seventy years. Furthermore, this minimum was almost coincident with the severest period of the Little Ice Age having covered the Earth from the early 14th to the middle 19th centuries. These results suggest a possible connection between the long-term variation of the Earth's climate and that of the solar activity.The Sun shines as emitting continuously the nuclear energy as light quanta. As well known, this energy is almost constantly being released from the thermonuclear reactions taking place in the central core of the Sun. Whenever the efficiency of these reactions changes due to some mechanisms to occur inside the Sun, the light emissivity from the Sun, namely, the Sun's luminosity, would change accordingly. Thus some change in the physical processes inside the Sun may always induce various kinds of variability as related to the rearrangement of the internal structure of the Sun. As a result of this kind of change, the Earth's climatic condition also seems to be critically influenced in association with the variation of the Sun's luminosity. Since it seems that the mean level of the solar activity for a long time, say, 100 yr, is dependent on the long-term change in the physical processes inside the Sun as related to the variation of the solar luminosity, the Earth's climatic condition may be necessarily changeable as dependent on the long-term variation of the solar activity. Some evidence is here shown by reviewing the historical records on the climatic change.A brief account is finally given on the possible origin of the inconstancy in the solar luminosity and activity.  相似文献   

16.
The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.  相似文献   

17.
本文提出了根据发动机故障样本建立故障方程的方法。发动机经验故障方程是不同于发动机小偏差方程的另一类故障方程,它为发动机故障诊断提供了一条简便易行的途径,并且使发动机故障诊断范围扩展到气路分析方法难以适应的场合。文中讨论了经验故障方程的建立方法及其在发动机故障诊断中的应用,给出了利用经验故障进行发动机故障诊断的实例。  相似文献   

18.
吸附式风扇/压气机技术的进展与展望   总被引:4,自引:2,他引:2  
吸附式风扇/压气机是目前国内外高增压比压缩系统的一个重要研究方向.对其产生的背景, 研制的必要性, 技术特点以及研究动向进行了回顾和分析.这一技术的采用能够大幅度提高压比, 减少发动机的轴向长度和重量, 降低风扇的噪音;在做功能力增加重量减轻的同时, 能够增加飞行器的灵活性以及有效载荷, 从而减少燃油消耗.但是这种新型的结构也带来了强度、气弹稳定性等问题, 对此给出了一些分析结果和建议.   相似文献   

19.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   

20.
The Saturnian system contains 18 known satellites ranging from 10 km to 2575 km in radius. In bulk properties and surface appearance these objects show less regularity than the sparser Jupiter system. The Galilean-sized moon Titan sports a dense atmosphere of nitrogen and methane which renders surface observations difficult, but also makes this moon intriguing from the standpoints of climate change and exobiology. The Cassini-Huygens mission will make extensive observations of the satellites over a range of wavelengths, as well as using in-situ sampling of satellite environments (and in the case of Titan, sampling of atmosphere and surface). The goals of these extensive investigations are to understand the bulk properties of the satellites, their surface compositions and evolution through time, as well as interactions with the magnetosphere and rings of Saturn. This knowledge in turn should provide a deeper understanding of the origin of the Saturnian system as a whole and underlying causes for the distinctive differences from the Jovian satellite system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号