首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.  相似文献   

2.
An analysis of observations and investigations carried out in space flight has shown that some cosmonauts and astronauts have experienced vestibular disorders during the transition to weightlessness. Vestibular-sensory disorders include: Spatial illusions (the feelings of falling down, being in an upside-down position, the sensations of rotation of the craft or the body) and vertigo occurring during the onset of the orbital flight and head movements; Feelings, similar to those experienced in response to Coriolis accelerations on the Earth, which occasionally develop in weightlessness during the spacecraft rotation upon abrupt head and body movements and restrained feet; Feelings "of the load on the vestibular analyser which is unlike any Earth-bound effects" upon abrupt head movements during the first hours of an orbital flight and "a prolonged movement" during the switch-off of thrusters in weightlessness. Vestibular-vegetative disorders comprise a complex of symptoms similar to those of motion sickness: loss of appetite, stomach awareness (12%), hypersalination, nausea (9.6%) and vomiting (4.8%). Soviet studies suggest that the vestibular tolerance to the flight effects depends on the natural stability and training to the cumulative effect of adequate vestibular stimuli. This has been used in the development of the system of vestibular selection. Changes in the vestibular function seem to play the major role in the development of motion sickness in weightlessness, extra-labyrinthine factors being contributory. The current hypotheses have not yet been adequately confirmed in experiments. A detailed physiological analysis allows the conclusion that the decisive factor in the development of motion sickness may be the disturbance of the function of analysers responsible for spatial orientation which take the form of sensory conflicts as well as an altered reactivity of the organism due to the hemodynamic rearrangement.  相似文献   

3.
Vestibular disturbances in connection with space flight were reported by a majority of participating astronauts and cosmonauts. These include motion sickness symptoms in the first few days of the space flight, as well as standing, gait and orientation disturbances after the return to Earth. The Aerospace Medical Community has been trying to select those people that are particularly adapted to the above stresses or that can be further adapted through training programs. As the circle of selectees extends to women, the problem arises as to whether differences between men and women exist under the conditions of space flight. In seeking answers to this question we studied a group of 42 women and 44 men, who were further subdivided according to their subjective motion sickness sensitivity, as determined by a questionnaire. Using this material, 26 men and 22 women were designated as motion sickness resistant, and 18 men and 20 women were designated as nonresistant. The vestibular test battery given these test subjects consisted of caloric, rotatory, optokinetic, vestibulo-spinal and vestibulo-vegetative testing. Because of the mixed orthostatic and vestibular problems seen after space flights, we also studied the response of the vestibular apparatus during peripheral blood pooling as induced by lower body negative pressure. The collected historical and test data are analyzed in this paper with emphasis on the relationship to motion sickness tendency.  相似文献   

4.
双线阵立体测绘卫星定位对外方位元素的测量精度要求高,然而布设控制点成本高,缺少全世界范围内的控制点。针对这一问题,提出应用星载激光测高仪提高定位精度的方法。首先,分析了双线阵立体测绘卫星和激光测高仪的误差特性,即测绘相机定位精度受外方位角元素影响比较大,激光测高仪高程精度受角元素影响相对较小。然后,论证了用激光测高仪提高定位精度的可行性。在相同的卫星平台定向辅助数据下,激光测高仪高程精度要比测绘相机高得多,可以作为高程约束提高定位精度。最后,应用光束法平差原理对激光测高数据作为高程约束进行了仿真试验。结果表明,加入激光测高数据可将双线阵立体测绘卫星的高程精度由8.0m提高到约3.5m。此方法可为实现全球无控制点测绘提供一定参考。  相似文献   

5.
为了指导临近空间地面模拟装置中等离子体源结构设计及等离子体环境参数优化,围绕相关指标体系要求,采用数值模拟方法,分析临近空间等离子体环境地面模拟装置中的射流等离子体与下游目标模拟体相互作用。通过研究射流入口处等离子体状态与下游等离子体对钝体包覆效果的依赖关系,明确了影响包覆特性的关键等离子体参数、重要外控参量,及其对下游目标模拟体包覆特性的影响规律。仿真结果表明:相对于其他因素,射流入口的半径、气体流速、速度偏角、气体温度、钝体直径、环境背压等工况对有效实验区长度及厚度参数的影响较大。相关结果对于临近空间等离子体环境地面模拟装置中等离子体源优化设计及等离子体环境参数定向调控具有指导和借鉴意义。  相似文献   

6.
The environmental effects on a proposed large flexible space structure, namely, the Hoop/Column antenna system are studied. Mathematical models for the disturbances resulting from the interaction of solar radiation pressure with the vibrating and also thermally deformed antenna structure are developed. Expressions for the stabilizing gravity-gradient torques are also obtained. The uncontrolled transient response of the antenna system shows that the structure may tumble in orbit due to the expected disturbances. Linear quadratic regulator techniques are used to develop control laws for the actuators which could provide both shape and orientation control. The controlled response of the system is simulated for various initial conditions. The steady state rms pointing accuracy and the antenna surface accuracy are met in all the cases considered here. In order to reduce the control effort required to maintain the shape and orientation, the thermal deformations will have to be minimized. In the preliminary design of the system, materials should be considered which have a higher thermal conductivity and a lower coefficient of linear expansion, within cost constraints.  相似文献   

7.
Motion sickness can occur when an accelerating force acting on the human body repeatedly changes amplitude and direction or both. It also can occur without any motion after transfer into a constant force field significantly different from Earth-gravity. Dynamic and static causes of motion sickness can be distinguished accordingly. Space sickness, too, has dynamic as well as static aspects. Dynamic space sickness might depend on increased bilateral differential sensitivity of the peripheral and central vestibular apparatus, whereas static space sickness may be caused by erroneous compensation of bilaterial asymmetries of the otolith-system in the microgravity environment. Experiments in airplanes, cars and on a vestibular sled have shown that the susceptibility to motion sickness is highest for changes of acceleration in the negative X-axis (as compared to the other axes) of the body. During reciprocating linear accelerations on the vestibular sled, standstill periods of movement and the direction of movement cannot correctly be indicated, because the peripheral vestibular apparatus lacks true motion detectors.  相似文献   

8.
The results of designing the attitude control system of the first Russian nanosatellite TNS-0 no. 1 providing orientation of its longitudinal axis along the local geomagnetic field induction vector are presented. The system consists of a permanent magnet and two sets of hysteresis rods. The magnetic and geometric parameters of the magnet and rods are calculated. The influence of the permanent magnet field on the hysteresis rods and mutual influence of the rods in the case of compact satellite packaging are analyzed. Examples of calculations of transient processes and steady-state angular satellite motion are presented.  相似文献   

9.
Adaptation to the weightless state and readaptation after space flight to the 1-G environment on the ground are accompanied by various transitory symptoms of vestibular instability, kinetosis, and illusory sensations. Aside from the problem of how to treat and if possible prevent such symptoms, they offer a clue to a better understanding of normal vestibular functions. Weightlessness is a powerful new "tool" of vestibular research. Graybiel reported as early as 1952 that human subjects observed the illusion that a real target and the visual afterimage seemed to raise in the visual field during centrifugation when the subjects were looking toward the axis of rotation (oculogravic illusion). In aircraft parabolic-flight weightlessness, human subjects observed that fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculoagravic illusion). It can be shown by electronystagmography as well as by a method employing double afterimages that part of this illusion is caused by eye movements that are triggered by the changing input from the otolith system. Another part of the illusion is based on a change of the subjective horizontal and must be caused by convergence of vestibular and visual impulses "behind" the eyes. This part was measured independently of the first one by using a new method. Eye movements could be prevented during these experiments by optical fixation with the right eye on a target at the end of a 24-in. long tube which was rigidly attached parallel to the longitudinal axis of an aircraft. At the same time the subject tried to line up a shorter tube, which was pivoting around his left eye, with the subjective horizon.  相似文献   

10.
The influence of spatial orientation of the International Space Station (ISS) on the dose rate recorded during passages of the station through the South-Atlantic anomaly (SAA) zone is considered. The dose rates detected by dosimeters of the radiation control system of the ISS are compared with results of calculation-based estimates. It is shown that when crossing the SAA region in close trajectories, but with different spatial orientation of the station, the dose rate near cabins of the ISS Service Module can differ by more than a factor of two.  相似文献   

11.
顾晨辉王伦文 《宇航学报》2012,33(11):1699-1705
针对复杂电磁环境下正交跳频信号分选时效不高问题,提出了一种正交跳频信号动态分选方法。首先基于滑动窗口的数据流模型,采用构造型神经网络对跳频信号频域数据和方位信息动态聚类,减轻噪声等因素影响,解决方位信息和幅度关联模糊性的问题;再在相应的覆盖簇内运用时频关联方法,实现正交跳频信号的动态分选,实验结果表明该方法是有效的。
  相似文献   

12.
Weightlessness in man induces changes in astronaut orientations and consequently in his patterns of movements and postures. An ethological method has been used to describe the "overall" spontaneous behaviour of astronauts as seen from video recordings made during Space Flights. The work has consisted in analysing the relationships between orientation, movement and posture as an indication of a motor adaptative reorganization in such a situation. The results obtained lead us to consider three different aspects: (1) Orientation references. The astronaut orientates himself with reference to the Space Shuttle's internal structure; the increase of visual activity confirms the choice of the retinal vertical as frame of reference. (2) Motor coordination. The main data reveals a decrease in motor stereotypes by the diversity of motor acts observed and the importance of the link between orientation and posture described as follows: slightly inclined forward position, with legs flexed at about 135 degrees. (3) Cognitive references. There appears to be a new organization of the cognitive image of the body scheme, the missing vestibular information being supplied by peripheral vision instead which could play a role in the astronaut's perception of his own movement.  相似文献   

13.
A method of elimination of relative secular drifts in satellite formations is suggested for the case of influence of a perturbation due to polar oblateness of the Earth. The method is applied to eliminate relative secular drifts in the case when a satellite is controlled using an engine mounted along its orientation axis (the satellite is supplied with a passive magnetic attitude control system) and with the help of a solar sail installed on one of the satellites. Analytical results are confirmed by numerical simulation.  相似文献   

14.
At present the main trends among the most important problems of otorhinolaryngology in space medicine have become defined as vestibulology, audiology and clinical aspects (prophylaxis, diagnosis and treatment of ENT diseases in flight). The principal result of recent vestibular studies has probably been the establishment of an apparent relationship between the resistance of the vestibular system to adequate ground-based stimulation and tolerance to space flight. The findings of the studies formed the basis for the development of a new system of vestibular selection, as well as demonstrated the usefulness of special vestibular training of astronauts by active and passive methods. In audiology certain urgency is acquired by the problem of noise limitation in space cabins and auditory system reliability prediction for preserving a high work capability in crew members. The hemodynamic changes in weightlessness, as well as the possibility for allergic lesions, create conditions for distorted course of the ENT diseases and vaso-motor disorders. The prophylaxis of aspirations also deserves close attention since the possibilities of their onset increase in weightlessness. The rendering of immediate, timely aid will depend not only on the presence of the necessary medical equipment but also on the ability of the crew members to render the appropriate otorhinolaryngological aid.  相似文献   

15.
Vestibular tests in the selection of cosmonauts.   总被引:4,自引:0,他引:4  
J Kubiczkowa 《Acta Astronautica》1981,8(9-10):1029-1034
Vestibulo-vegetative disorders in cosmonauts and astronauts occurring during space flight compel otolaryngologists to search for vestibular tests enabling a precise evaluation of the activity of the vestibular apparatus and showing disposition to motion sickness. Otoneurological investigation of Polish candidates for cosmonaut status consisted of the following vestibular tests: caloric, rotatory, optokinetic, swinging torsion, statokinesimetric and vestibulo-vegetative. The value of various vestibular tests for aviation and space medicine is presented in this paper, taking into account the results of investigations of the equilibrium system with the group of pilots selected for space flight as well as extensive experience with candidates for the air service and also trained pilots and patients. The relatively frequent lack of correlation between the results of the applied tests, which renders difficult the proper evaluation of the equilibrium system, is emphasized in the paper. Finally, the results of investigations of acute habituation of the vestibular apparatus are discussed.  相似文献   

16.
Chelnokov  Yu. N. 《Cosmic Research》2001,39(5):470-484
The problem of optimal control is considered for the motion of the center of mass of a spacecraft in a central Newtonian gravitational field. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems. Both the variants have a quaternion variable among the phase variables. In the first variant this variable characterizes the orientation of an instantaneous orbit of the spacecraft and (simultaneously) the spacecraft location in this orbit, while in the second variant only the instantaneous orbit orientation is specified by it. The suggested equations are convenient in the respect that they allow the general three-dimensional problem of optimal control by the motion of the spacecraft center of mass to be considered as a composition of two interrelated problems. In the first variant these problems are (1) the problem of control of the shape and size of the spacecraft orbit and (2) the problem of control of the orientation of a spacecraft orbit and the spacecraft location in this orbit. The second variant treats (1) the problem of control of the shape and size of the spacecraft orbit and the orbit location of the spacecraft and (2) the problem of control of the orientation of the spacecraft orbit. The use of quaternion variables makes this consideration most efficient. The problem of optimal control is solved on the basis of the maximum principle. Several first integrals of the systems of equations of the boundary value problems of the maximum principle are found. Transformations are suggested that reduce the dimensions of the systems of differential equations of boundary value problems (without complicating them). Geometrical interpretations are given to the transformations and first integrals. The relation of the vectorial first integral of one of the derived systems of equations (which is an analog of the well-known vectorial first integral of the studied problem of optimal control) with the found quaternion first integral is considered. In this paper, which is the first part of the work, we consider the models of motion of the spacecraft center of mass that employ quaternion variables. The problem of optimal control by the motion of the spacecraft center of mass is investigated on the basis of the first variant of equations of motion. An example of a numerical solution of the problem is given.  相似文献   

17.
We consider the behavior of the proper atmosphere of space objects in interaction with a flow of incident particles and when the orientation of an object changes. An asymmetry in the behavior of a sorption film with respect to an incident flow of atmospheric particles and the flow’s angular characteristics is shown, as well as the film influence on operation of sensors of the spacecraft’s attitude control system. A recommendation concerning usage of heavy gases for technological operations onboard spacecraft is given.  相似文献   

18.
充液航天器液体晃动等效力学模型的建立   总被引:2,自引:0,他引:2  
在考虑液体表面张力影响液体晃动求解的基础上,利用动力学方程等价准则,建立了三轴定向充液卫星在二维平动和二维摆动扰动作用下的空间摆等效力学模型,并对两种情况下等效摆的主要参数进行了计算和比较。结果表明,考虑表面张力时,液体的晃动特性对航天器姿态控制系统稳定性有不利影响。  相似文献   

19.
文章介绍了用于航天员前庭功能测试的多功能转椅和四柱电动秋千。前者采用液压控制,可产生不同位置下水平旋转的角加速度,利用20对引电环记录生理测试信号;后者通过内外框架和吊篮舱的自然摆动进行线加速度测试,摆杆长度以0.5m为档差,分为3.5m、4m、4.5m、5m、5.5m、6m六档可调。  相似文献   

20.
Experimental studies of visual mechanisms suggests that the CNS represents image information with respect to preferred horizontal and vertical axes, as shown by a phenomenon known as the "oblique effect". In the current study we used this effect to evaluate the influence of gravity on the representation and storage of visual orientation information. Subjects performed a psychophysical task in which a visually-presented stimulus line was aligned with the remembered orientation of a reference stimulus line presented moments before. The experiments were made on 5 cosmonauts during orbital space flight and additionally on 13 subjects in conditions of normal gravity with a tilting chair. Data were analyzed with respect to response variability and timing. On earth, these measurements for this task show a distinct preference for horizontally and vertically oriented stimuli when the body and gravitational axes were aligned. This preference was markedly decreased or disappeared when the body axis was tilted with respect to gravity; this effect was not connected with ocular counter-rolling nor could we find a preference of any other intermediate axis between the gravity and body aligned axes. On the other hand, the preference for vertical and horizontal axes was maintained for tests performed in microgravity over the course of a 6 month flight, starting from flight day 6. We concluded that subjects normally process visual orientation information in a multi-modal reference frame that combines both proprioceptive and gravitational cues when both are available, but that a proprioceptive reference frame is sufficient for this task in the absence of gravity after a short period of adaptation. Some of the results from this study have been previously published in a preliminary report. Grant numbers: 99-04-48450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号