共查询到4条相似文献,搜索用时 15 毫秒
1.
J.G. Luhmann S.A. Ledvina D. Odstrcil M.J. Owens X.-P. Zhao Yang Liu Pete Riley 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission. 相似文献
2.
H. Mavromichalaki A. Papaioannou C. Plainaki C. Sarlanis G. Souvatzoglou M. Gerontidou M. Papailiou E. Eroshenko A. Belov V. Yanke E.O. Flückiger R. Bütikofer M. Parisi M. Storini K.-L. Klein N. Fuller C.T. Steigies O.M. Rother B. Heber R.F. Wimmer-Schweingruber K. Kudela I. Strharsky R. Langer I. Usoskin A. Ibragimov A. Chilingaryan G. Hovsepyan A. Reymers A. Yeghikyan O. Kryakunova E. Dryn N. Nikolayevskiy L. Dorman L. Pustil’nik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage. 相似文献
3.
A. Aran B. Sanahuja D. Lario 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1492-1499
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes. 相似文献
4.
N.B. Crosby 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Extreme events are defined as those events in which the characteristics (e.g. field strength, speed, intensity of radiation, energies) of the associated phenomena (e.g. solar flares, coronal mass ejections, solar proton events) are some orders of magnitude larger than in other events. Such strong events commonly occur about two years before and after sunspot maximum and some strong events occur as well in the declining phase before the solar activity minimum [Bothmer V., Zhukov A. The 11 Sun as the prime source of space weather, in: Bothmer, V., Daglis, I. (Eds.), Space Weather: Physics and Effects, Springer Praxis Books, 12 pp. 438, 2007]. In the first part of the paper the characteristics of the Jan. 2005 and Dec. 2006 events are given. This is followed by a presentation of the effects that were encountered on technological systems and also addresses the issue of what could have occurred on biological systems during such events. The second part of the paper deals with how one should go about analyzing solar extreme events - as part of the global distribution of all events or as ”outliers” with their own special characteristics. 相似文献