共查询到14条相似文献,搜索用时 15 毫秒
1.
Stefaan Van wal Simon Tardivel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):411-435
The impact of nonspherical bodies is complex, even at low velocities where contacting bodies are assumed to be rigid. Models of varying complexity (e.g. finite element methods) can be used to evaluate such impacts, but it is advantageous to use impulsive models such as that by Stronge, which are computationally inexpensive and governed by (fixed) material interaction coefficients. Stronge’s model parameterizes nonspherical rigid-body impacts with energetic restitution and Coulomb friction coefficients. This model was successfully used in large-scale simulations of ballistic lander deployment to asteroids and comets, whose trajectories involve dozens of chaotic bounces. To better understand the complex dynamics of these bouncing trajectories, this paper performs a dedicated study of idealized bouncing in two dimensions and on a flat plane, in order to limit the involved degrees of freedom. Using a numerical implementation of Stronge’s model, the motion of a bouncing square is simulated with different impact conditions: the square’s impact attitude, velocity, and mass distribution as well as the surface restitution and friction coefficients. The simulation results are used to investigate how these conditions affect the bouncing motion of the square, with a distinction between first impacts with zero angular velocity and successive impacts in which the square is spinning. This reveals how a single “macroscopic” bounce that separates two ballistic arcs may often consist of multiple micro-impacts that occur in quick succession. For the different impact conditions, we show how the number of micro-impacts per macro-bounce varies, as well as the normal, tangential, and total kinematic restitution coefficients. These are different from the energetic material restitution coefficient that parameterizes the impact. Finally, we examine how the settling time and distance of the bouncing trajectories change. These trends provide insight into the bouncing motion of ballistic lander spacecraft in small-body microgravity. 相似文献
2.
Hopper concepts for small body landers 总被引:3,自引:0,他引:3
S. Ulamec V. Kucherenko J. Biele A. Bogatchev A. Makurin S. Matrossov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The investigation of small bodies, comets and asteroids, can contribute substantially to our understanding of the formation and history of the Solar System. In situ observations by landers play an important role in this field. 相似文献
3.
4.
M.D. Paton G. Kargl A.J. Ball S.F. Green A. Hagermann N.I. Kömle M. Thiel J.C. Zarnecki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement. 相似文献
5.
D.J. Scheeres S. Van wal Z. Olikara N. Baresi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):476-495
The dynamical environment on and about the Martian moon Phobos is explored. This planetary moon provides a unique dynamical environment in the solar system, being subject to extreme tidal forces and having a characteristically non-spherical shape. Further, it is not in a fully circular orbit, meaning that it has librations that arise from its eccentricity, contributing to a periodic forcing environment. Thus, to plan and implement missions in the vicinity of and on Phobos will require these considerations be taken into account. In this paper the latest published models of the Phobos shape and dynamics are used to characterize its dynamical environment in close proximity orbit about the body, for motion across its surface and for controlled hovering motion in its vicinity. It is found that surface motion is subject to a number of “speed limits” that can cause a moving vehicle to leave the surface and to possibly escape the moon and enter orbit about Mars. In terms of orbital stability, the existence of libration orbit families are characterized down to the surface using an exact potential, and the known stable QSO orbits are shown to be associated with families of stable quasi-periodic orbits. 相似文献
6.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(1):816-828
Asteroid exploration has become a research hotspot, and anchoring probes to asteroids is essential for in situ scientific detections. The influence of ultrasonic drilling force-closure anchoring parameters on the anchoring performance and its influence mechanism are studied based on discrete element simulation. An anchoring simulation model is established after calibrating virtual asteroid soil, and its validity is verified by anchoring experiments. Discrete element simulations are performed to study the effect of cross-sectional shape and longitudinal cross-sectional shape of anchoring rods on anchoring force. The internal influence mechanism of anchor configurations on the anchoring force is analyzed by extracting the number of stressed particles in the simulation area. The anchoring force has a positive correlation with the cross-sectional area. The rotation of non-circular anchors causes fluctuations in the anchoring force. The effect of the anchored material strength on the anchoring force is studied with the calibrated virtual asteroid soil. The relationship between anchoring force and anchoring parameters is studied, and the optimal anchoring angle is 54° for anchored material strength of 100 kPa. Finally, the variation of the anchoring force with the direction of external force is studied. This work can guide the anchor configuration design and the anchoring condition parameter optimization. 相似文献
7.
Asteroid and comet hazard: Identification problem of observed space objects with the parental bodies
M.G. Sokolova Y.A. Nefedyev N.Y. Varaksina 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This article focuses on the genetic identification of observed small cosmic bodies with alleged parental bodies; namely, comets, asteroids and meteoroid swarms. There is a problem of the upper D-value limit as a measure of proximity between the orbits of the bodies in the five-dimensional phase space (Southworth and Hawkins, 1963). In the study of genetic relationships of the comet and meteor complexes, the D value is usually taken as equal to 0.2 for all meteor showers. However, the upper D limit should be investigated for each meteoroid complex. For example, such investigation was performed for the Taurid meteor complex (Porub?an et al., 2006). In this paper, the upper D-criterion limit value was investigated for the Perseid meteor shower. The 1862 III Swift–Tuttle comet is its parental comet. 相似文献
8.
研究了小天体探测器在深空特殊环境下电源系统所面对的问题,提出了全调节母线能量直接传递的电源系统方案。根据探测器的轨道特性,分析了探测器在飞行过程中环境条件和不同负载等对电源系统的影响,考虑光照条件和峰值功率之间的关系,基于能量平衡的原理,对探测器的电源系统进行分析、设计。最后,通过数学仿真验证了方案设计的合理性。 相似文献
9.
动量传递因子 $ beta $ 是评估动能撞击效果的重要参量。根据动能撞击过程中动量传递因子的理论模型,分析了撞击器特性参数和小天体结构特性参数对动量传递因子取值的影响,并对不同动能撞击方案以及不同材料特性小天体的成坑效应和动量传递因子进行分析。研究表明:标度律参数 $ mu $ 对 $ beta $ 影响较大, $ mu $ 是地面实验拟合得到的系数,与材料强度特性相关;当小天体为单体岩石结构时,撞击器速度及密度、小天体密度及表面强度对 $ beta $ 影响较大,而撞击器半径和小天体引力对 $ beta $ 影响较小;当小天体为碎石堆结构时, $ beta $ 对撞击器特性参数和小天体特性参数不敏感,且数值较小。对三种不同动能撞击方案的成坑效应与动量传递因子形成规律进行研究,发现撞击器初始动能对 $ beta $ 影响较大。当小天体为单体岩石结构时,其对应的动量传递因子取值较大,而当小天体为碎石堆结构时,其对应的 $ beta $ 取值较小且基本不变。对相同动能撞击方案下不同材料特性小天体(C型、S型和X型小行星)产生的撞击效应进行分析,发现在引力主导时,βC>βS >βX,而在强度主导时 $ beta $ 取值较小且基本相同。 相似文献
10.
本文根据人体的热调节机制建立了二维人体热调节的有限元模型,并设计了相应的实验对该模型进行了验证,实验结果与计算结果吻合较好,本模型对于以人体-环境热交换为内容的工程实践和理论研究有较高的应用价值。 相似文献
11.
天基激光测距载荷单反射镜组件柔性设计与力热稳定性分析 总被引:1,自引:0,他引:1
针对激光通信与测距一体化星间链路载荷轻小型单反射镜组件进行结构设计与力热稳定性研究,开展单反镜柔性支撑机构优化设计,根据运载力学环境与在轨力热环境工况,对反射镜组件进行光机集成分析,验证光机结构的在轨力热稳定性.分析结果表明,双层圆弧形槽口柔性支撑结构在温度拉偏后反射镜的面型精度均方根(RMS)可达λ/72,基频模态为417.93Hz,满足指标要求.进一步对反射镜组件进行动力学分析,随机振动分析结果表明,反射镜加速度响应均方根为11arms,满足3σ准则.通过0.2g正弦扫频试验验证了有限元模态分析相对误差为2.23%,实验结果表明,反射镜组件柔性支撑设计合理,力热稳定性分析结果基本准确可靠,满足工况要求. 相似文献
12.
小天体检测是小天体防御和预警的前提。针对小天体目标信噪比低、检测难的问题,提出了基于统计特征空间提取和支持向量机(SVM)的极暗弱小天体检测方法。区别于传统方法基于时间或空间上目标的能量和背景噪声能量的瞬时能量差别或是瞬时能量差别的累积,对目标进行检测。该方法不依赖目标能量大小,提取运动目标穿过背景时对稳定性产生的扰动来反演运动目标。将输入的图像序列转化为单像元时序信号,划分时序窗口提取统计特征,关联形成统计特征空间,利用更高维度的变化特性检测目标变化。通过SVM将暗弱小天体检测问题转化为目标与背景的二分类问题,避开了较难解决的阈值分割问题同时具有更好的泛化性能。利用真实数据与其他经典方法进行对比分析,使得分类准确率提高4.02%。该方法能够适应更低的信噪比,在极低信噪比下仍表现出稳定的检测性能。 相似文献
13.
镜反射凹面及相互可视表面的轨道外热流计算 总被引:6,自引:0,他引:6
通过对空间表面所受外热流以及镜反射表面所具有的特性的分析,提出了采用蒙特卡罗法计算镜反射凹面及镜反射相互可视表面的轨道热流的方法,并对半球凹面和两相互垂直可视平板的轨道热流进行了计算。 相似文献