首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
F Winterberg   《Acta Astronautica》2000,47(12):879-883
Autocatalytic fission–fusion microexplosions, mutually amplifying fission and fusion reactions, are proposed for propulsion. Autocatalytic fission–fusion microexplosions can be realized by imploding a shell of uranium 235 (or plutonium) onto a magnetized deuterium–tritium (DT) plasma. After having reached a high temperature, the DT plasma releases fusion neutrons making fission reactions in the fissile shell increasing the implosion velocity which in turn increases the fusion reaction rate until full ignition of the DT plasma. To implode the fissile shell a small amount of high explosive and to magnetize the DT plasma a small auxiliary electric discharge are required. In comparison to nuclear bomb pulse propulsion, the energy released per pulse is much smaller and the efficiency higher. And in comparison to laser- or particle-beam-ignited fusion microexplosions, there is no need for a massive fusion ignition driver.  相似文献   

2.
林庆国  王浩明  程诚 《上海航天》2019,36(6):114-120
针对未来空间任务对能源和动力日益提高的需求,提出了基于氢化镁的核电核热双模共质空间核动力技术。该技术以一种储氢密度高、热稳定性较好,能够以常温常压储存的氢化镁作为工质,通过核能加热后氢化镁分解成为核热推进可用的高压氢气和电推进可用的单质镁,并结合高效动态热电转换系统,形成大功率核电源、大功率超高比冲核电推进、高比冲氢气核热推进以及大推力镁核热推进多种工作模式。基于氢化镁的多模共质空间核动力技术解决了低温推进剂、气态工质在空间应用时的存储安全性和存储密度低的问题,其具备的多种工作模式能够针对不同任务需求提供相应的能源或者动力输出,提高核动力飞行器任务能力。  相似文献   

3.
We compare a variety of mission scenarios to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. We examine direct, semi-direct, stop-over, semi-cycler, and cycler architectures, and we include electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems in our technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. Many different combinations of technologies and architectures are applied to the same Mars mission to determine which combinations provide the greatest potential reduction in the injected mass to LEO. We approximate the technology readiness level of a mission to rank development risk, but omit development cost and time calculations in our assessment. It is found that Earth–Mars semi-cyclers and cyclers require the least injected mass to LEO of any architecture and that the discovery of accessible water on Mars has the most dramatic effect on the evolution of Mars exploration.  相似文献   

4.
《Acta Astronautica》2007,60(10-11):834-845
We describe a concept for spacecraft propulsion by means of an energetic ion beam, with the ion source fixed at the spacecraft starting point (e.g., a lunar-based ion beam generator) and not onboard the vessel. This approach avoids the substantial mass penalty associated with the onboard ion source and power supply hardware, and vastly more energetic ion beam systems can be entertained. We estimate the ion beam parameters required for various scenarios and consider some of the constraints limiting the concept. We find that the “ion beam sail” approach can be viable and attractive for journey distances not too great, for example, within the Earth–Moon system, and could potentially provide support for journeys to the inner planets.  相似文献   

5.
Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1–10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.From Kosmicheskie Issledovaniya, Vol. 43, No. 1, 2005, pp. 67–75.Original English Text Copyright © 2005 by Linhart, Kravárik.  相似文献   

6.
This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.  相似文献   

7.
深空探测作为我国航天领域未来的重要任务之一,需要性能更高的推进系统提供动力。核热推进系统具有高比冲、大推力、长运行寿命、可重复启动等优点,可为未来深空探测任务提供可靠的动力支撑。经过了60多年的发展,核热推进固态堆芯燃料元件被研制出了多种类型,如六棱柱石墨基燃料元件、扭曲条带燃料元件、六棱柱金属陶瓷燃料元件、球形包覆颗粒燃料元件、MITEE型燃料元件、SLHC型燃料元件、Grooved Ring型燃料元件等。总结归纳了核热推进固态堆芯燃料元件的发展状况,提出了发展核热推进固态堆芯燃料元件的关键技术,可为我国核热推进系统燃料元件的研制提供借鉴。  相似文献   

8.
Roger X. Lenard   《Space Policy》2001,17(4):285-289
The development and exploitation of nuclear power and propulsion represent certain didactic imperatives for human civilization. Among these are economic, epistemological, moral and commercial propositions. Developing space nuclear power and propulsion represents one future; the choice of not to pursue the course barring some breakthrough in physics represents a dramatically different future. The author argues that the time is now fortuitous for deployment and operation of nuclear propulsion and power, primarily nuclear electric propulsion, at significant levels, employing figures of merit that transcend simple cost models used to justify nuclear power sources in the past. The proposition is examined, in the light of US and UN restrictions, to ascertain how best to proceed. The author argues that viewpoints of certain vocal albeit uninformed public interest groups are typically self-serving and generally categorically incorrect; it can be asserted that these same groups do not truly represent the public interest at all. It is, therefore, necessary to present an even-handed assessment of both sides of the argument to determine the virtues and liabilities of embarking on such a developmental path. Given the imperatives mentioned, the author argues that nuclear power and propulsion for space systems is a societal necessity.  相似文献   

9.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

10.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

11.
借鉴“东方红3号”卫星的推进系统组成和“SMART-1”探月器的飞行轨道,提出了2种微波等离子体推力器(MPT)应用于月球探测器的推进系统方案(即复合推进方案和统一推进方案),分析计算了MPT用于姿态控制时对推进剂耗量的影响及用于主推进变轨时推进剂耗量和飞行时间的变化,并讨论了MPT的电源系统带来的附加质量。结果表明,在付出一定飞行时间代价的条件下,MPT的引入将大大增加有效载荷质量。  相似文献   

12.
杨彬  唐生勇  李爽  夏陈超 《宇航学报》2018,39(11):1197-1208
针对载人火星探测任务,结合我国现有技术基础,提出我国载人火星探测方案,重点研究载人火星探测任务推进系统的设计。首先,综合考虑载人深空探测任务的约束,采用Pork-Chop图设计了适用于不同任务场景的转移轨迹;然后,参考我国空间站技术,基于核热推进系统设计了我国载人火星探测任务的飞船;最后,对核热推进系统的发动机台数和推力进行了优化,得到了适用于不同任务场景的最优推进系统组合方案。本文所研究内容为我国未来载人火星探测任务提供了有益参考。  相似文献   

13.
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)–Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.  相似文献   

14.
脉冲发动机复合壳体的强度分析及优化设计   总被引:1,自引:0,他引:1  
采用ANSYS有限元软件对脉冲发动机复合壳体进行了结构强度分析和优化设计。用六节点三角形单元对复合壳体模型离散化;给出了复合壳体在临界压力载荷下的失效模式;分别在两种材料层中对最大应力约束下,以减少复合壳体的总质量为目标,对复合壳体的壁厚尺寸和过渡圆半径尺寸等设计变量进行了优化,并对设计变量的敏感度进行了分析。计算结果表明,在工作压力载荷下,安装在轨姿控舱体内的脉冲发动机的强度可以满足设计要求;壁厚尺寸是关键的优化设计变量,优化后脉冲发动机复合壳体的总质量可减轻5.7%。理论分析结果与试验结果相吻合。  相似文献   

15.
电推进羽流与航天器相互作用的研究现状与建议   总被引:3,自引:0,他引:3  
电推进与传统的化学推进相比可以节约大量推进剂质量,被广泛用作地球同步轨道卫星南北位置保持和深空探测等任务的主推进系统。电推进器工作时产生的羽流与传统的化学推进器羽流有显著区别,电推进羽流对航天器的影响是进行卫星电推进器系统设计时需要重点关注的问题。文章讨论了电推进羽流对航天器的主要影响,介绍了国外在地面模拟试验、空间飞行验证和软件仿真技术等方面的研究现状,同时对国内开展羽流与航天器相互作用研究提出了建议。  相似文献   

16.
Scientists have expended much energy researching SPS but their theories have never yet been realistically tested. It is time for this to change and SPS 2000 — a Japanese-sponsored project to construct and operate a pilot plant to supply electricity to residents of equatorial zones — could provide the means. The project and its benefits are described and the political—economic imperatives for undertaking it presented. The author argues that there are cogent — and practical — reasons for funding a pilot plant, especially given the vast sums spent on other space activities, and on nuclear power, although the latter has never lived up to expectations.  相似文献   

17.
国外空间推进技术现状和发展趋势   总被引:5,自引:0,他引:5  
空间推进技术通常可分为常规化学推进、电推进、微推进和新型推进4大类。常规化学推进是目前航天器的主要推进方式,性能继续提升。电推进已成功证明其优势和可靠性,在各种卫星和深空探测器上大量应用,且朝更宽泛功率的方向发展。蓬勃发展的微小卫星对微小推力、小质量、低功耗的微推进提出了迫切需求。无毒化学推进、太阳帆推进、核推进等新型推进技术正在加紧研制或进行空间飞行试验。首先综述国外卫星和深空探测器等航天器的各类空间推进技术应用和研究现状,然后分析其发展趋势,最后提出对我国空间推进技术的发展建议。  相似文献   

18.
新概念推进技术及其应用前景   总被引:1,自引:2,他引:1  
刘红军 《火箭推进》2004,30(4):36-40
综合评述了到目前为止人们所提出的几种新概念推进系统(包括核热能推进、反物质推进、束能推进、微推进、绳系推进和太阳能推进等)技术方案的特点,分析了所存在的主要技术难点,并简要论述了其未来的发展和应用前景。  相似文献   

19.
航天运输领域发展的核心目标包括提高运载能力、降低发射成本及减少发射准备时间等。相对于传统的化学推进技术,先进推进技术采用新能源或新机理,旨在从根本上满足未来对有效载荷、发射成本和发射周期的要求。对国内外组合动力装置、核聚变动力推进、离子推进、激光推进、核子脉冲推进、太阳帆推进、磁场帆推进、布萨德喷气推进、反物质推进等先进推进技术的研究进展进行综述和可行性分析,并给出了发展启示。  相似文献   

20.
相较于传统大卫星,微小卫星具有结构紧凑、质量轻便和成本低廉的特点。然而,受功率和质量负载的限制,微小卫星一般不装备推进系统,其航线也局限于近地轨道。为扩展微小卫星的功能,满足日益复杂的任务需求,需给其配备合适的微推进系统。固体推进系统具有结构简单、寿命长、可靠性高的优点,但无法重复启动。为得到可重复启动的固体微推进系统,设计了一种非自持燃烧的光敏推进剂,采用激光控制其燃烧。在背压为大气压的环境下,利用高速摄像机拍摄燃烧过程并记录燃速。之后,对光敏推进剂的激光烧蚀过程进行建模。分析结果表明:激光可控制光敏推进剂的燃烧,燃速与激光强度成线性关系;该光敏推进剂的最小激光点火强度为0.28 W/mm~2;燃速计算值与实测值的误差在10%以内,证明该数学模型具备工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号