共查询到20条相似文献,搜索用时 0 毫秒
1.
I. G. Mitrofanov A. Bartels Y. I. Bobrovnitsky W. Boynton G. Chin H. Enos L. Evans S. Floyd J. Garvin D. V. Golovin A. S. Grebennikov K. Harshman L. L. Kazakov J. Keller A. A. Konovalov A. S. Kozyrev A. R. Krylov M. L. Litvak A. V. Malakhov T. McClanahan G. M. Milikh M. I. Mokrousov S. Ponomareva R. Z. Sagdeev A. B. Sanin V. V. Shevchenko V. N. Shvetsov R. Starr G. N. Timoshenko T. M. Tomilina V. I. Tretyakov J. Trombka V. S. Troshin V. N. Uvarov A. B. Varennikov A. A. Vostrukhin 《Space Science Reviews》2010,150(1-4):183-207
The design of the Lunar Exploration Neutron Detector (LEND) experiment is presented, which was optimized to address several of the primary measurement requirements of NASA’s Lunar Reconnaissance Orbiter (LRO): high spatial resolution hydrogen mapping of the Moon’s upper-most surface, identification of putative deposits of appreciable near-surface water ice in the Moon’s polar cold traps, and characterization of the human-relevant space radiation environment in lunar orbit. A comprehensive program of LEND instrument physical calibrations is discussed and the baseline scenario of LEND observations from the primary LRO lunar orbit is presented. LEND data products will be useful for determining the next stages of the emerging global lunar exploration program, and they will facilitate the study of the physics of hydrogen implantation and diffusion in the regolith, test the presence of water ice deposits in lunar cold polar traps, and investigate the role of neutrons within the radiation environment of the shallow lunar surface. 相似文献
2.
Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview 总被引:2,自引:0,他引:2
M. S. Robinson S. M. Brylow M. Tschimmel D. Humm S. J. Lawrence P. C. Thomas B. W. Denevi E. Bowman-Cisneros J. Zerr M. A. Ravine M. A. Caplinger F. T. Ghaemi J. A. Schaffner M. C. Malin P. Mahanti A. Bartels J. Anderson T. N. Tran E. M. Eliason A. S. McEwen E. Turtle B. L. Jolliff H. Hiesinger 《Space Science Reviews》2010,150(1-4):81-124
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards. 相似文献
3.
Gordon Chin Scott Brylow Marc Foote James Garvin Justin Kasper John Keller Maxim Litvak Igor Mitrofanov David Paige Keith Raney Mark Robinson Anton Sanin David Smith Harlan Spence Paul Spudis S. Alan Stern Maria Zuber 《Space Science Reviews》2007,129(4):391-419
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will
execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance
Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation.
LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to
assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one
advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine
the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search
for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted
narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well
as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration
Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and
will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer
Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution
to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface
in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently
shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate
the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background
space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging
and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments
and an overview of their objectives. 相似文献
4.
Testing the attitude control system of the LUNAR ORBITER was accommplished in an air-bearing facility specifically designed for that purpose. This facility was designed to minimize external disturbances in the platform by seismic motion of the floor, mass deflection of the platform, turbine torques from the air bearing, and thermal currents in the room. The facility was used for the System Design Verification tests. These tests included limit-cycle operation, maneuver sequences, wide-angle Sun acquisition and the star-acquisition (Canopus) sequence. Maneuver angle resolution was to be at least 0.1°±0.1° with the capability of measuring three-axis maneuvers for angles to 80°. The design philosophy as evolved from the experience obtained on company-funded research activities as well as the constraints and approach are presented. Solutions to the facility problem areas, which were predicted or encountered during testing, are detailed. Test results, verifying the solutions to the problems encountered, are discussed. Typical operating characteristics of the simulator during different phases of the LUNAR ORBITER test program are presented 相似文献
5.
6.
The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission 总被引:1,自引:0,他引:1
William M. Klipstein Bradford W. Arnold Daphna G. Enzer Alberto A. Ruiz Jeffrey Y. Tien Rabi T. Wang Charles E. Dunn 《Space Science Reviews》2013,178(1):57-76
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters. 相似文献
7.
激光测距作为空间目标测定轨精度最高的技术,对非合作目标的测量精度比微波雷达、光电探测等技术高1~2个数量级,非常有利于非合作目标的精密定位、轨道复核及精确编目,保障在轨空间飞行器的安全。激光在非合作目标表面会发生漫反射,返回光斑弥散、回波微弱,采用大口径望远镜接收系统是必要的。鉴于大口径望远镜研制难度大,提出基于单站发射多站接收的空间目标激光测距新方法,即采用多接收望远镜增加接收面积,实现目标测量能力提升。通过分析单站发射多站接收的激光测距技术特点,基于双望远镜系统开展空间合作目标测量实验,验证了多望远镜接收激光信号的可行性,为该测距技术发展奠定了实验基础。 相似文献
8.
Rue Arthur K. Fisk Jerome W. 《IEEE transactions on aerospace and electronic systems》1968,(3):360-368
This paper discusses the interrelationships among the ranging capability of a laser ranging system, the beamwidth of the transmitter, and the system pointing error. Since, in general, the system pointing error is statistical, the probability of successful ranging can be determined by means of these interrelationships, as is illustrated in a detailed analysis of a laser ranging system in which a gimbaled mirror is employed as an optical relay. 相似文献
9.
For many military applications small, lightweight range finders are required that operate at a high pulse repetition rate. It will be shown that a ranging system with an injection laser in the transmitter can fulfill these requirements. The performance of an optical ranging system employing a pulsed gallium arsenide laser diode transmitter, with peak powers up to 100 watts at room temperature is described. After a brief review of fundamental system parameters, calculations of the range capability of the system are given, based upon the Poisson distribution of photoelectron statistics. A discussion is presented on the experimental support of theoretical analysis. 相似文献
10.
Daly M. G. Barnouin O. S. Dickinson C. Seabrook J. Johnson C. L. Cunningham G. Haltigin T. Gaudreau D. Brunet C. Aslam I. Taylor A. Bierhaus E. B. Boynton W. Nolan M. Lauretta D. S. 《Space Science Reviews》2017,212(1-2):899-924
Space Science Reviews - The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the... 相似文献
11.
12.
航空发动机压气机叶片是典型薄壁结构,通过激光喷丸强化在叶缘引入残余压应力,是提高其抗异物撞击能力,延长疲劳寿命的有效途径。为解决双侧同步强化方法存在的材料层裂损伤风险的问题,提出薄壁结构双侧异步激光喷丸强化方法。试验研究发现:单侧薄壁激光喷丸试验中,光斑功率密度的改变会使薄壁结构相对于激光入射方向呈现"∧"或"∨"两种扭曲变形趋势;另一面采用同样参数进行激光喷丸后,扭曲变形会恢复;合理采用激光喷丸参数,双侧异步激光喷丸强化与同步强化相似,可以在两侧表面均得到残余压应力场,并且扭曲变形能满足形状精度要求。 相似文献
13.
R. Wieler 《Space Science Reviews》1998,85(1-2):303-314
Lunar soil and certain meteorites contain noble gases trapped from the solar wind at various times in the past. The progress in the last decade to decipher these precious archives of solar history is reviewed. The samples appear to contain two solar noble gas components with different isotopic composition. The solar wind component resides very close to grain surfaces and its isotopic composition is identical to that of present-day solar wind. Experimental evidence seems by now overwhelming that somewhat deeper inside the grains there exists a second, isotopically heavier component. To explain the origin of this component remains a challenge, because it is much too abundant to be readily reconciled with the known present day flux of solar particles with energies above those of the solar wind. The isotopic composition of solar wind noble gases may have changed slightly over the past few Ga, but such a change is not firmly established. The upper limit of ~5% per Ga for a secular increase of the 3He/4He ratio sets stringent limits on the amount of He that may have been brought from the solar interior to the surface (cf. Bochsler, 1992). Relative abundances of He, Ne, and Ar in present-day solar wind are the same as the long term average recorded in metallic Fe grains in meteorites within error limits of some 15-20%. Xe, and to a lesser extent Kr, are enriched in the solar wind similar to elements with a first ionisation potential < 10 eV, although Kr and Xe have higher FIPs. This can be explained if the ionisation time governs the FIP effect (Geiss and Bochsler, 1986). This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
Altitude characteristic is of great importance for studying when an air-breathing pulsed laser thruster works in the dense atmosphere condition of 0-30 km altitude. The experimental findings all over the world show that the similar relationship between impulse coupling coefficient and altitude. According to strong explosion theory and an ideal gas model, a dimensionless factor indicating energy law of similitude is introduced, and formula of impulse coupling coefficient is deducted. Then theoretical study of altitude characteristic is carried out and mechanism of altitude characteristic is further explained. The results indicate that there is a maximum value of impulse coupling coefficient if the dimensionless factor equals to 0. 41 in theory, and whether the phenomena of maximum appear or not depends on the range of the dimensionless factor related to altitude. As to a conical nozzle with the fixed length of 120 mm, the relationship between the sonic velocity and the dimensionless factor causes the maximum phenomenon at the altitude of about 12. 5 km, and maximum theoretical impulse coupling coefficient is also found in the experimental investigations. The mechanism of altitude characteristic for air-breathing pulsed laser thruster is discovered in this article, which will provide reference for further research on altitude characteristic. 相似文献
15.
As two kinds of defects, recast layers and spatters, commonly accompanied by laser-drilled holes always prevent the laser drilling technique from extending its applications in aerospace and aircraft industries, therefore, a novel hybrid process incorporating laser drilling with jet electrochemical machining (JECM-LD) has been developed to solve these problems as well as improve the overall quality of laser-drilled holes. It is executed by directing an electrolyte jet coaxially aligned with a laser beam onto the workpiece surface. During the process, the electrolyte jet produces electrochemical reaction with the surface material, effective cooling of it and carries away the process scraps. A two-dimensional mathematical model is proposed to describe the shape of the holes machined by JECM-LD. The model is verified through comparison between the results from simulation and those from experiments conducted on the test pieces made of 321 stainless steel 0.5 mm thick processed by the pulsed Nd:YAG laser at second harmonic wavelength. An examination of the experimental results under an optical microscope discovers that, by contrast with the laser drilling in air, the JECM-LD has effectively removed the recast layers and spatters, but its efficiency dropped by about 30%. 相似文献
16.
外差式侦察接收机对频率捷变信号进行侦察的可行性 总被引:2,自引:1,他引:2
根据频率捷变信号的特点,分析了几种侦察体制下接收频率捷变信号需要的中频带宽、扫描步进频宽和截获时间,给出了对频率捷变信号侦察的可行性方案。 相似文献
17.
激光熔覆的研究发展状况 总被引:4,自引:0,他引:4
介绍了激光熔覆的机理;激光熔覆的工艺,组织性能;激光熔覆的应用;激光熔覆存在的主要问题及解决的措施等各方面的研究发展状况,指出了激光熔覆的今后发展方向。 相似文献
18.
激光熔覆的研究发展状况 总被引:10,自引:0,他引:10
介绍了激光熔覆的机理;激光熔覆的工艺、组织性能(包括粉末加入方法、激光熔覆工艺、激光束及离焦量的选择、激光熔覆的组织性能等);激光熔覆的应用;激光熔覆存在的主要问题及解决的措施(包括覆层的冶金质量、熔覆层的开裂、裂纹、微观偏析与显微应力等)等各方面研究发展状况,指出了激光熔覆的今后发展方向(如激光熔覆过程中的应力应变动态产生过程、减少覆层一基材界面应力,开发梯度材料、解决与大功率激光器配套的系列装置及添加元素的熔覆方式和工艺稳定性问题等)。 相似文献
19.
Ignazio Ciufolini Antonio Paolozzi Erricos C. Pavlis John C. Ries Rolf Koenig Richard A. Matzner Giampiero Sindoni Hans Neumayer 《Space Science Reviews》2009,148(1-4):71-104
During the past century Einstein’s theory of General Relativity gave rise to an experimental triumph; however, there are still aspects of this theory to be measured or more accurately tested. Today one of the main challenges in experimental gravitation, together with the direct detection of gravitational waves, is the accurate measurement of the gravitomagnetic field generated by the angular momentum of a body. Here, after a brief introduction on frame-dragging, gravitomagnetism and Lunar Laser Ranging tests, we describe the past measurements of frame-dragging by the Earth spin using the satellites LAGEOS, LAGEOS 2 and the Earth’s gravity models obtained by the GRACE project. We demonstrate that these measurements have an accuracy of approximately 10%. We then describe the LARES experiment to be launched in 2010 by the Italian Space Agency for a measurement of frame-dragging with an accuracy of a few percent. We finally demonstrate that a number of claims by a single individual, that the error budget of the frame-dragging measurements with LAGEOS-LAGEOS 2 and LARES has been underestimated, are indeed ill-founded. 相似文献
20.
动量轮卸载对环月卫星SMART-1轨道的影响和定轨策略 总被引:1,自引:0,他引:1
动量轮卸载是卫星进行姿态控制的一种常用手段。通过对欧空局(ESA)首颗环月卫星SMART-1测轨资料的分析,计算了动量轮卸载对卫星轨道的影响,特别讨论了在动量轮卸载的精确信息未知时提高卫星定轨和预报精度的策略。计算表明,2006年5月29日至6月2日期间,SMART-1多达19次的动量轮卸载过程使得其轨道位置变化达到3km。如果不考虑动量轮卸载的影响,定轨结果相比于ESA重建轨道的位置误差最大可达742m。本文利用分段常数的经验加速度模型来模制动量轮卸载产生的小推力。计算表明,即使动量轮卸载的精确信息未知,采用该方法也可显著提高定轨和预报精度,定轨位置误差最大下降到246m。计算还表明,经验加速度的合理选择(周期性、常数或线性经验加速度)决定定轨精度的改善程度。考虑到我国的首颗探月卫星“嫦娥一号”也将采用动量轮卸载的方式进行姿态控制,本文的结论对我国的探月工程有一定的借鉴意义。 相似文献