首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Pickup ions, created by ionization of slow moving atoms and molecules well inside the heliosphere, provide us with a new tool to probe remote regions in and beyond the heliosphere and to study injection and acceleration processes in the solar wind. Comprehensive and continuous measurements of H, He, C, N, O, Ne and other pickup ions, especially with the Solar Wind Ion Composition Spectrometer (SWICS) on both Ulysses and ACE, have given us a wealth of data that have been used to infer chemical and physical properties of the local interstellar cloud. With SWICS on Ulysses we discovered a new population of pickup ions, produced from atomic and molecular sources deep inside the heliosphere. The velocity distributions and composition of these “inner source” pickup ions are distinctly different from those of interstellar pickup ions, showing effects of strong adiabatic cooling, and a composition resembling that of the solar wind. Strong cooling indicates that the source of these pickup ions lies close to the Sun. The similarity of composition of inner source heavy ions to that of the solar wind implies that the dominant production mechanism for these pickup ions involves the absorption and re-emission of solar wind from interplanetary dust grains. While interstellar pickup ions are the seed population of the main Anomalous Cosmic Rays (ACRs), inner source pickup ions may be an important source of the rarer ACRs such as C, Mg, Si, S, and Fe. We present new results and review previous work with an emphasis on characteristics of the local interstellar cloud and properties of the inner source. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
We describe the response of the Solar Wind Around Pluto (SWAP) instrument (McComas et al. in Space Sci. Rev. 140:261, 2008) to 1–40 amu ions in order to assess whether it can be used to determine plasma composition. Our goal is to enhance the scientific return on the SWAP plasma measurements obtained during the New Horizons traversal down Jupiter’s magnetotail in 2007. We present calibration data for the SWAP flight instrument and another largely flight-like SWAP sensor, dubbed “SWAP-II”. SWAP’s mass-dependent response was characterized by analyzing the count ratios from its two channel electron multipliers (CEMs). We observe significant differences in the instrument response between light (mass ≤ He) and heavy (mass > He) ions, especially for energies below ~4 keV. We attribute these differences to the mass-dependent electron emission yield from SWAP’s ultra-thin (~1 μg/cm2) carbon foil. Using these results, we develop a plasma composition analysis technique to statistically distinguish between light and heavy plasma ions measured by the instrument.  相似文献   

3.
Interactions of ions accelerated in solar flares produce gamma-ray lines and continuum and neutrons. These emissions contain a rich set of observables that provides information about both the accelerated ions and the environment where the ions are transported and interact. Ion interactions with the various nuclei present in the ambient medium produce gamma-ray lines at unique energies. How abundance information is extracted from the measurements is discussed and results from analyses of a number of solar flares are presented. The analyses indicate that the composition of the ambient gas where the ions interact (typically at chromospheric densities) is different from that of the photosphere and more like the composition of the corona, exhibiting low-FIP elemental enhancements that may vary from flare to flare. Evidence for increased Ne/O and the photospheric 3He abundance is also discussed.  相似文献   

4.
Johannes Geiss is a world leader and foremost expert on measurements and interpretation of the composition of matter that reveals the history, present state, and future of astronomical objects. With his Swiss team he was first to measure the composition of the noble gases in the solar wind when in the late 1960s he flew the brilliant solar wind collecting foil experiments on the five Apollo missions to the moon. Always at the forefront of the art of composition measurements, he with his colleagues determined the isotopic and elemental composition of the solar wind using instruments characterized by innovative design that have provided the most comprehensive record of the solar wind composition under all solar wind conditions at all helio-latitudes. He discovered heavy interstellar pickup ions, from which the composition of the neutral gas of the Local Interstellar Cloud is determined, and the “Inner Source” of pickup ions. Johannes Geiss played a key role both in the in-situ measurements and modeling of molecular ions in comets, and the interpretation of these data. He and co-workers measured the composition of plasmas in the magnetospheres of Earth and Jupiter. Here we highlight Johannes Geiss’ many discoveries and seminal contributions to our knowledge of the composition of matter of the Sun, solar wind, interstellar gas, early universe, comets and magnetospheres.  相似文献   

5.
6.
Kinetic simulations of supercritical, quasi-perpendicular shocks yield time-varying solutions that cyclically reform on proton spatio-temporal scales. Whether a shock solution is stationary or reforming depends upon the plasma parameters which, for SNR shocks and the heliospheric termination shock, are ill defined but believed to be within this time-dependent regime. We first review the time-dependent solutions and the acceleration processes of the ions for a proton–electron plasma. We then present recent results for a three-component plasma: background protons, electrons and a second ion population appropriate for SNR (heavy ions) or the termination shock (pickup protons). This ion acceleration generates a suprathermal “injection” population – a seed population for subsequent acceleration at the shock, which may in turn generate ions at cosmic ray energies.  相似文献   

7.
We present our current knowledge of the solar chemical composition based on the recent significant downward revision of the solar photospheric abundances of the most abundant metals. These new solar abundances result from the use of a 3D hydrodynamic model of the solar atmosphere instead of the classical 1D hydrostatic models, accounting for departures from LTE, and improved atomic and molecular data. With these abundances, the new solar metallicity, Z, decreases to Z=0.012, almost a factor of two lower than earlier widely used values. We compare our values with data from other sources and analyse a number of impacts of these new photospheric abundances. While resolving a number of longstanding problems, the new 3D-based solar photospheric composition also poses serious challenges for the standard solar model as judged by helioseismology.  相似文献   

8.
The “classic” anomalous cosmic ray (ACR) component originates as interstellar neutral atoms that drift into the heliosphere, become ionized and picked up by the solar wind, and carried to the outer heliosphere where the pickup ions are accelerated to hundreds of MeV, presumably at the solar wind termination shock. These interstellar ACRs are predominantly singly charged, although higher charge states are present and become dominant above ~350 MeV. Their isotopic composition is like that of the solar system and unlike that of the source of galactic cosmic rays. A comparison of their energy spectra with the estimated flux of pickup ions flowing into the termination shock reveals a mass-dependent acceleration efficiency that favors heavier ions. There is also a heliospheric ACR component as evidenced by “minor” ACR ions, such as Na, Mg, S, and Si that appear to be singly-ionized ions from a source likely in the outer heliosphere.  相似文献   

9.
We present results from hybrid simulations (kinetic ion/fluid electron) of the interaction of interstellar pickup ions with collisionless shocks. Since cross-field transport is unphysically suppressed in the one-dimensional geometry used here, an ad hoc scattering algorithm is used to model this effect. This is a necessary step to accelerate the pickup ions from their initial low energies at quasi-perpendicular shocks to the high energies which are often observed associated with traveling interplanetary shocks by Ulysses.  相似文献   

10.
Understanding properties of solar energetic particle (SEP) events associated with coronal mass ejections has been identified as a key problem in solar-terrestrial physics. Although recent CME shock acceleration models are highly promising, detailed agreement between theoretical predictions and observations has remained elusive. Recent observations from ACE have shown substantial enrichments in the abundances of 3He and He+ ions which are extremely rare in the thermal solar wind plasma. Consequently, these ions act as tracers of their source material, i.e., 3He ions are flare suprathermals and He+ ions are interstellar pickup ions. The average heavy ion composition also exhibits unsystematic differences when compared with the solar wind values, but correlates significantly with the ambient suprathermal material abundances. Taken together these results provide compelling evidence that CME-driven shocks draw their source material from the ubiquitous but largely unexplored suprathermal tail rather than from the more abundant solar wind peak. However, the suprathermal energy regime has many more contributors and exhibits much larger variability than the solar wind, and as such needs to be investigated more thoroughly. Answers to fundamental new questions regarding the preferred injection of the suprathermal ions, the spatial and temporal dependence of the various sources, and the causes of their variability and their effects on the SEP properties are needed to improve agreement between the simulations and observations.  相似文献   

11.
The ESA mission Rosetta, launched on March 2nd, 2004, carries an instrument suite to the comet 67P/Churyumov-Gerasimenko. The COmetary Secondary Ion Mass Anaylzer – COSIMA – is one of three cometary dust analyzing instruments onboard Rosetta. COSIMA is based on the analytic measurement method of secondary ion mass spectrometry (SIMS). The experiment’s goal is in-situ analysis of the elemental composition (and isotopic composition of key elements) of cometary grains. The chemical characterization will include the main organic components, present homologous and functional groups, as well as the mineralogical and petrographical classification of the inorganic phases. All this analysis is closely related to the chemistry and history of the early solar system. COSIMA covers a mass range from 1 to 3500 amu with a mass resolution mm @ 50% of 2000 at mass 100 amu. Cometary dust is collected on special, metal covered, targets, which are handled by a target manipulation unit. Once exposed to the cometary dust environment, the collected dust grains are located on the target by a microscopic camera. A pulsed primary indium ion beam (among other entities) releases secondary ions from the dust grains. These ions, either positive or negative, are selected and accelerated by electrical fields and travel a well-defined distance through a drift tube and an ion reflector. A microsphere plate with dedicated amplifier is used to detect the ions. The arrival times of the ions are digitized, and the mass spectra of the secondary ions are calculated from these time-of-flight spectra. Through the instrument commissioning, COSIMA took the very first SIMS spectra of the targets in space. COSIMA will be the first instrument applying the SIMS technique in-situ to cometary grain analysis as Rosetta approaches the comet 67P/Churyumov-Gerasimenko, after a long journey of 10 years, in 2014.  相似文献   

12.
In this review the present state of our knowledge on the properties of heavy ions in low energy cosmic rays measured in the Skylab mission and in other spacecrafts is summarised and the possible mechanisms of their origin are discussed. A brief review of the general features of the galactic and solar cosmic rays is given in order to understand the special features of the low energy heavy ions of cosmic rays. The results of the cosmic ray experiment in the Skylab show that in the low energy interval of 8–30 MeV/N, the abundances of oxygen, nitrogen, and neon ions, relative to carbon are enhanced by a factor of 5 to 2 as compared to high energy cosmic rays; while Mg, Si, S, and A are depleted. In 50–150 MeV/N energy interval the abundance of nuclei of Ca-Cr relative to iron-group (Z = 25–28) is found to be highly enhanced, as compared to high energy cosmic rays. Furthermore the observations of the energy spectra of O, N, and Ne ions and their fairly large fluences in the energy interval of 8–30 MeV/N below the geomagnetic cut off energy of 50 MeV/N for fully stripped nuclei at the Skylab orbit indicate that these heavy ions are probably in partly ionised states. Thus, it is found that the Skylab results represent a new type of heavy ion population of low energy cosmic rays below 50 MeV/N, in the near Earth space and their properties are distinctly different from those of high energy cosmic rays and are similar to those of the anomalous component in the interplanetary space. The available data from the Skylab can be understood at present on the hypothesis that low energy interplanetary cosmic ray ions of oxygen etc. occur in partly ionised state such as O+1,O+2, etc. and these reach the inner magnetosphere at high latitudes where stripping process occurs near mirror points and this leads to temporarily trapped ions such as O+3, O+4, etc. It is noted that the origin of these low energy heavy cosmic ray ions in the magnetosphere and in interplanetary space is not yet fully understood and new type of sources or processes are responsible for their origin and these need further studies.  相似文献   

13.
We present new estimates of He/H and CNO abundance ratios in the atmospheres of a selection of B2 supergiants which imply that the C/N ratio in the most luminous Ia stars is close to its equilibrium value. The is also some evidence for more moderate CN abundance anomalies in the B2Ib and B2II supergiants. These results, together with other recent work, imply that the effects of the CNO bi-cycle on the composition of B-supergiant atmospheres are most severe for the more luminous and massive stars. Furthermore, studies of LMC B-supergiants indicate that a small fraction of these very luminous stars are nitrogen weak. This picture is qualitatively consistent with theoretical predictions whenever massive stars perform blue loops in the HR diagram, returning from a red supergiant phase to become core helium burning blue supergiants with atmospheres contaminated by nuclear processed material.  相似文献   

14.
Many species of pickup ions, both of interstellar origin and from an inner, distributed source have been discovered using data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses. Velocity distribution functions of these ions were measured for the first time over heliocentric distances between 1.35 and 5.4 AU, both at high and low latitudes, and in the disturbed slow solar wind as well as the steady fast wind of the polar coronal holes. This has given us the first glance at plasma properties of suprathermal ions in various solar wind flows, and is enabling us to study the chemical and, in the case of He, the isotopic composition of the local interstellar cloud. Among the new findings are (a) the surprisingly weak pitch-angle scattering of low rigidity, suprathermal ions leading to strongly anisotropic velocity distributions in radial magnetic fields, (b) the efficient injection and consequent acceleration of pickup ions, especially He+ and H+, in the turbulent solar wind, and (c) the discovery of a new extended source releasing carbon, oxygen, nitrogen and possibly other atoms and molecules in the inner solar system. Pickup ion measurements are now used to study the characteristics of the local interstellar cloud (LIC) and, in particular, to determine accurately the abundance of atomic H, He, N, O, and Ne, the isotopes of He and Ne, as well as the ionization fractions of H and He in the LIC. Pickup ion observations allow us to infer the location of the termination shock and, in combination with measurements of anomalous cosmic rays, to investigate termination shock acceleration mechanisms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The Solar Wind and Suprathermal Ion Composition Experiment (SMS) on WIND is designed to determine uniquely the elemental, isotopic, and ionic-charge composition of the solar wind, the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 kms–1 (protons) to 1280 kms–1 (Fe+8), and the composition, charge states as well as the 3-dimensional distribution functions of suprathermal ions, including interstellar pick-up He+, of energies up to 230 keV/e. The experiment consists of three instruments with a common Data Processing Unit. Each of the three instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made by SMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition SMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; and (vii) the physics of the pick-up process of interstellar He as well as lunar particles in the solar wind, and the isotopic composition of interstellar helium.  相似文献   

16.
We present relative carbon and oxygen abundances derived via an optically thin recombination line analysis for five WO stars, and compare the derived abundances to recent evolutionary models. New recombination coefficients for O4+, O5+ and O6+ ions have allowed total oxygen abundances to be derived. The final C/He values range between 0.4 and 0.8 by number, consistent with C/He ratios previously derived for WC stars. O/He values range between 0.1–0.4, with C/O ratios between 2.1–4.8.A comparison of the derived abundances with the evolutionary models of Maeder (1990) and Schaller et al. (1992) shows promising agreement. We find reasonably tight agreement between the abundances derived for the WO stars. The degree of enhancement for the oxygen abundances in regions of low metallicity predicted by Maeder (1990) is not corroborated by our results.Additionally we present a revised, quantified classification scheme for WO subtypes. We extend the class to lower excitation, WO5, and place MS 4 (=WR 30a) in this class. Equivalent widths of the strongest lines of MS 4 are also presented. Finally, we present new observations of DR 1, a WO3 star located in the dwarf irregular galaxy IC 1613.  相似文献   

17.
After one year of operation the GEOS-1 Ion Composition Experiment has surveyed plasma composition at all local times in the L range 3 8 and the energy per charge range from thermal to 16 keV/e. From measurements made in the keV range during eleven magnetic storms we find that the percentage of heavy (M/Q > 1) ions present in the outer magnetosphere increases by a factor of 3 to 10 during disturbances. We conclude that two independent sources (solar wind, characterized by 4He2+, and ionosphere, characterized by O+) give on the average comparable contributions to injected populations, although in a single event one or the other source may dominate. However, in magnetically quiet periods protons are the dominant species with a few percent of heavy ions. With the help of special satellite manoeuvres magnetic field aligned fluxes of 0.05-3 keV/e H+, He+, O+ with traces of O2+ have been observed which may be related to ion beams found previously at lower altitudes in the auroral zone. At still lower energies ( 1 eV/e) the thermal plasma population is found to be made up of six ion species, three of which, D+, He2+ and O2+, were unknown in the magnetosphere prior to the GEOS-1 measurements. We present here a study of the evolution of doubly charged ions and their parent populations over four consecutive days. Various production mechanisms for doubly charged ions are discussed. We argue that ionization of singly charged ions by UV and energetic electrons and protons is the dominant process for plasmasphere production. Furthermore, the observed high concentrations of O2+ at high altitudes are a result of production in the upper ionosphere and plasmasphere combined with upward transport by thermal diffusion. Throughout the 1 year lifetime of GEOS-1 the ICE functioned perfectly and, because of its novel design, a short review of technical performance is included here.  相似文献   

18.
The relative abundances of low energy ions (0.6–2.0 MeV/n) in solar energetic particle (SEP) and corotating interaction region (CIR) events have been measured by the EPAC experiment aboard Ulysses since launch in October 1990 until the present time. We give an overview of the abundances of heavy ions (He, C, Ne, Fe) relative to oxygen during energetic particle events lasting longer than 5 days during the in- and out-of-ecliptic phase of the mission. While the period Oct. 1990 to Aug. 1992 was dominated by high solar activity the Ulysses out of ecliptic passage at solar latitudes up to 45° went parallel to the declining phase of solar activity. Thus a very clear structure of corotating interaction regions was observed. While the in-ecliptic composition is in general agreement with measurements made near the Earth, the development of the CIR-composition shows two phases: From Aug. 1992 to May 1993 the C/O-ratio is 0.55–0.70, afterwards it increases to 0.8–0.9. This increase is correlated to the disappearance of the current sheet at 30° solar latitude reported by Smithet al. (1993).  相似文献   

19.
We made streamer observations with the Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO) during the early part of 1998, which was a time of moderate solar activity. We present an empirical study of coronal ion kinetics using the line profiles from these observations. Our first and most striking result is that the mid-latitude (ML) streamers have much narrower O VI 1032 Å line profiles than the solar minimum equatorial (SME) streamers. Our second result is that the line profiles from a small collection of ions in ML streamers do not seem to be consistent with the ions having a single temperature and turbulent velocity. We discuss several interpretations, including line of sight (LOS) effects. This work is supported by the National Aeronautics and Space Administration under grant NAG-3192 to the Smithsonian Astrophysical Observatory.  相似文献   

20.
In this paper, we present the results of calculating conditions for gas vibration excitement, sound pressure frequency and level as a function of mixture composition, geometric burner parameters and the resonator throat with constant capacity. We estimate in quantity the parameters influencing a vibration combustion process in the Helmholtz resonator with the inlet multichannel burner which result in the maximum possible gas vibration amplitude value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号