首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The authors develop the theory of CA-CFAR (cell-averaging constant false-alarm rate) detection using multiple sensors and data fusion, where detection decisions are transmitted from each CA-CFAR detector to the data fusion center. The overall decision is obtained at the data fusion center based on some k out of n fusion rule. For a Swerling target model I embedded in white Gaussian noise of unknown level, the authors obtain the optimum threshold multipliers of the individual detectors. At the data fusion center, they derive an expression for the overall probability of detection while the overall probability of false alarm is maintained at the desired value for the given fusion rules. An example is presented showing numerical results  相似文献   

2.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   

3.
The problem of decentralized binary hypothesis testing by a team consisting of N decision makers (DMs) in tandem is considered. Each DM receives an observation and transmits a binary message to its successor; the last DM has to decide which hypothesis is true. The necessary and sufficient condition for the probability of error to go asymptotically to zero as N→∞ is that the log-likelihood ratio of the observation of each DM be unbounded. The result is generalized for multiple hypotheses and multiple messages. An easily implementable suboptimal decision scheme is also considered; in this case, the necessary and sufficient condition for the probability of error to asymptotically go to zero is that the log-likelihood ratio of the observation of each DM be unbounded from both above and below. The tradeoff between the complexity of the decision rules and their performance is examined, and numerical results are presented, in order to demonstrate that the performance of both decision schemes is comparable  相似文献   

4.
Cascaded detector for multiple high-PRF pulse Doppler radars   总被引:1,自引:0,他引:1  
A postdetection design methodology for a multiple high-pulse-repetition frequency (PRF) pulse Doppler radar has been developed. The postdetection processor consists of an M out of N detector where range and target ambiguities are resolved, followed by a square-law detector which enhances the minimum signal-to-noise (S/N) power-ratio per pulse burst performance. For given probabilities of false alarm and detection, formulas are derived from which the three thresholds associated with the cascaded detector can be found. Fundamental tradeoffs between the minimum S/N required, number of ghosts, and the number of operations (NOPs) that the cascaded detector must perform are identified. It is shown that the NOPs and the number of ghosts increase and the minimum S/N required decreases as the binary M out of N detector passes more detections to the square-law detector  相似文献   

5.
A periodic ambiguity function (PAF) is discussed which describes the response of a correlation receiver to a CW signal modulated by a periodic waveform, when the reference signal in the receiver is constructed from an integral number N, of periods T, of the transmitted signal. The PAF is a generalization of the periodic autocorrelation function, to the case of non-zero Doppler shift. It is shown that the PAF of N periods is obtained by multiplying the PAF of a single period by the universal function sin(Nπν T)/N sin(πνT), where ν is the Doppler shift, to phase-modulated signals which exhibit perfect periodic autocorrelation when there is no Doppler shift. The PAF of these signals exhibits universal cuts along the delay and Doppler axes. These cuts are functions only of t, N and the number M, the modulation bits in one period  相似文献   

6.
The problem of distributed detection involving N sensors is considered. The configuration of sensors is serial in the sense that the Jth sensor decides using the decision it receives along with its own observation. When each sensor uses the Neyman-Pearson test, the probability of detection is maximized for a given probability of false alarm, at the Nth stage. With two sensors, the serial scheme has a performance better than or equal to the parallel fusion scheme analyzed in the literature. Numerical examples illustrate the global optimization by the selection of operating thresholds at the sensors  相似文献   

7.
The false-alarm and detection probabilities of a receiver summing M independent outputs of a linear detector are calculated by numerical saddlepoint integration. The saddlepoint approximation is also considered. Both constant-amplitude and Rayleigh-fading signals are treated, and the relative efficiency of the quadratic and the linear detectors for these is calculated for a broad range of values of M . The numerical integration method is the more efficient, the smaller the false-alarm probability or the false-dismissal probability, that is, under just those conditions for which the terms in the Gram-Charlier series oscillate most violently and the series becomes least reliable. The simpler saddlepoint approximation yields values that in those same regions have been found close enough to the exact probabilities to be adequate for most engineering purposes. The larger the number M of samples, the more efficient methods are  相似文献   

8.
Power losses in series-resonant converters (SRCs) operated above resonance are examined for the purpose of developing design guidelines leading to SRC designs with the highest possible operating efficiencies. Loss expressions are formulated and analyzed as functions of normalized voltage conversion ratio M and normalized output current J for the controlled transistor switches, antiparallel diodes, bridge diodes, and resonant capacitor. Overall losses range from a low of nearly 9% to a maximum of about 17%. Operating efficiencies corresponding to these losses range from a high of 92% to a low of 85%. Operation at the maximum efficiency of 92% occurs at values of M close to unity and is not highly dependent on J. However, in a practical closed-loop regulated SRC, operation with M too close to unity could provide an insufficient design margin, given component tolerances or other variations  相似文献   

9.
A solution is presented to the problem of finding the best set of K completely unmerged paths through a trellis with M i⩾K states at depth i in the trellis, i=0, 1, 2, . . ., N. Here, `best set' means that the sum of the metrics of all K paths in the set is minimized, and `completely unmerged' means that no two paths pass through a common state. The solution involves using the Viterbi algorithm on an expanded trellis. This result is then used to separate the tracks of K targets optimally in a simplified model of a multitarget radar system. The model includes measurement errors and false alarms, but it does not include the effects of missing detections or merged measurements  相似文献   

10.
Both the method of saddlepoint integration and its associated saddlepoint approximation are applied to calculating the probability of detecting correlated Rayleigh-fading signals in Gaussian noise by means of a detector that integrates M samples of the output of a quadratic rectifier. The quadrature components of the signal samples are modeled as an autoregressive moving-average process, and specific results are exhibited for a first-order Markov process. By these methods the fluctuation loss can be computed for much larger values of M and for larger values of the detection probability than previously. Values calculated by the saddlepoint approximation prove to be close enough to the exact values to be useful over a broad range of signal parameters  相似文献   

11.
Nonbinary m-sequences (maximal length sequences) for spread-spectrum communication systems that have a two-level autocorrelation are presented. The autocorrelation function of an m -sequence over the Galois field of q elements GF(q), where q=pk, for p a prime and k an integer greater than 1, is developed and shown to be bilevel when the elements of GF(q) are expressed as elements of a vector space over the pth roots of unity  相似文献   

12.
The detection performance of a binary integrator (M-out-of-N detector) against nonfluctuating, slowly fluctuating, and quickly fluctuating targets is given. Since the solution for the slowly fluctuating target is numerically intensive, a simpler approximate solution is developed. This approximation is very accurate and is valid even when the noise power varies from pulse to pulse within a single antenna scan  相似文献   

13.
A method for identifying a transfer function, H(z)=A(z)/B(z), from its frequency response values is presented. Identifying the transfer function involves determining the unknown degrees and coefficients of the polynomials A(z) and B( z), given the frequency response samples. The method for finding the parameters of the transfer function involves solving linear simultaneous equations only. An important aspect of the method is the decoupled manner in which the polynomials A(z) and B(z) are determined. The author presents two slightly different derivations of the linear equations involved, one based on the properties of divided differences and the other using Vandermonde matrices or, equivalently, Lagrange interpolation. A matrix synthesized from the given frequency response samples is shown to have a rank equal to the number of poles in the system  相似文献   

14.
On the uniform sampling of a sinusoidal signal   总被引:1,自引:0,他引:1  
It is generally accepted that a monochromatic signal such as sin 2πWt (W>0) must be sampled at a uniform rate greater than the ostensible Nyquist rate of 2W samples per to effect a reconstruction of the signal. It is shown that a sinusoid of frequency W Hz is completely determined by its samples taken at the uniform rate of 2r samples per second, where r>0 is arbitrary subject only to the restriction that W kr for any positive integer k. In particular, a pure sinusoid may be sampled uniformly without loss of information at arbitrarily small rates  相似文献   

15.
Due to the growing demands for system reliability and availability of large amounts of data, efficient fault detection techniques for dynamic systems are desired. In this paper, we consider fault detection in dynamic systems monitored by multiple sensors. Normal and faulty behaviors can be modeled as two hypotheses. Due to communication constraints, it is assumed that sensors can only send binary data to the fusion center. Under the assumption of independent and identically distributed (1ID) observations, we propose a distributed fault detection algorithm, including local detector design and decision fusion rule design, based on state estimation via particle filtering. Illustrative examples are presented to demonstrate the effectiveness of our approach.  相似文献   

16.
A distributed detection system consisting of a number of local detectors and a fusion center is considered. Each detector makes a decision for the underlying binary hypothesis testing problem based on its own observation and transmits its decision to the fusion center where the global decision is derived. The local decision rules are assumed to be given, but the local decisions are correlated. The correlation is generally characterized by a finite number of conditional probabilities. The optimum decision fusion rule in the Neyman-Pearson sense is derived and analyzed. The performance of the distributed detection system versus the degree of correlation between the local decisions is analyzed for a correlation structure that can be indexed by a single parameter. System performance as well as the performance advantage of using a larger number of local detectors degrade as the degree of correlation between local decisions increases  相似文献   

17.
Uniform randomization of ties is required for defining distribution-free ranks of independent and identically distributed quantized samples. Formulas of rank probabilities are given and applied to radar detection under quantized video samples. For some detectors, and assuming Gaussian noise, the asymptotic loss L(q) is calculated versus the normalized quantization step q, and the loss L(q) is estimated by Monte Carlo simulations. Both of these resulted in monotonic functions of q (0<q<1.1) that are independent of the other parameters. Furthermore, L(q)≈L(q )⩽0.45 dB, as q<0.8. The quantization step q is normalized with respect to the noise standard deviation  相似文献   

18.
The authors present a series solution using Hermite polynomials to the long-standing problem of computing the probability P that positive definite noncentral quadratic form d(x) of a Gaussian random vector xR satisfies d( x)⩽r2 for any given rR. This problem has wide applications in radar, tracking, air traffic control, etc. The fast-converging series solution presented is very accurate and can be performed rapidly using the recursion relations for Hermite polynomials  相似文献   

19.
Calculation of optimum gain for minimum distortion due to A/D (analog-to-digital) conversion requires the estimation of the input signal strength. To use a common AGC (automatic gain control) for both the I/Q (in-phase and quadrature) signals, it is efficient to estimate the input signal strength using the quantized A/D output from both channels. Assuming a Gaussian input, the relationship between σ of the input of the A/D converter and E(|x|+|y|) and E(max(|x|,|y|)+1/2 min (|x|,|y|)) for t quantized I/Q output x and y is derived. Numerical results obtained using the derived expression and the statistical data obtained through simulation show excellent agreement. It is concluded that, because of its simplicity, the cubic equation obtained by fitting the numerical results should be useful  相似文献   

20.
Decision fusion rules in multi-hop wireless sensor networks   总被引:1,自引:0,他引:1  
The decision fusion problem for a wireless sensor network (WSN) operating in a fading environment is considered. In particular, we develop channel-aware decision fusion rules for resource-constrained WSNs where binary decisions from local sensors may need to be relayed through multi-hop transmission in order to reach a fusion center. Each relay node employs a binary relay scheme whereby the relay output is inferred from the channel impaired observation received from its source node. This estimated binary decision is subsequently transmitted to the next node until it reaches the fusion center. Under a flat fading channel model, we derive the optimum fusion rules at the fusion center for two cases. In the first case, we assume that the fusion center has knowledge of the fading channel gains at all hops. In the second case, we assume a Rayleigh fading model, and derive fusion rules utilizing only the fading channel statistics. We show that likelihood ratio (LR) based optimum decision fusion statistics for both cases reduce to respective simple linear test statistics in the low channel signal-to-noise ratio (SNR) regime. These suboptimum detectors are easy to implement and require little a priori information. Performance evaluation, including a study of the robustness of the fusion statistics with respect to unknown system parameters, is conducted through simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号