首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 854 毫秒
1.
The original design by J. A. Simpson of the neutron monitor enabled continuous monitoring of the primary cosmic-ray flux by ground-based recordings of the nucleonic component with only a rather simple correction for atmospheric effects. Simpson (1957) extended the original pile to the 12 counter IGY neutron monitor which was deployed in a world wide network during the International Geophysical Year 1957/8. The desirability for monitors with higher counting rates became evident soon afterwards. Subsequently the NM64 super neutron monitor was designed by H. Carmichael for deployment in time for the International Quiet Sun Year 1964. Using unusually large 10BF3 proportional counters made at Chalk River, Hatton and Carmichael (1964) studied comprehensively the experimental design of the NM64. Consequently the efficiency of neutron counters to record evaporation neutrons produced in the lead of a monitor increased from 1.9% for the IGY to 5.7% for the NM64, an increase of 3.3 times the counting rate per unit area of lead producer. During the years much attention was given to the neutron multiplicity spectrum in neutron monitors. This spectrum is related to the energy spectrum of the nucleonic component incident on the neutron monitor, but is only weakly dependent on the spectrum of galactic cosmic rays at the top of the atmosphere. Contrary to galactic cosmic rays, solar flare protons and neutrons are observed predominantly as single counts per interaction, in multiplicity 1, because of the softness of solar flare particle energy spectra. Neutron monitors have also been specially designed to record solar neutrons with increased sensitivity. Newly developed 3He counters with a largely reduced thermal neutron absorption mean free path should lead to improved efficiency in recording primary cosmic radiation. Design criteria are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Moraal  H.  Belov  A.  Clem  J.M. 《Space Science Reviews》2000,93(1-2):285-303
The world's neutron monitor network was initiated about 50 years ago. It grew to a peak of almost 100 stations towards the end of the 1960s and at present about half of these are still active. Many of the original questions about the production of atmospheric secondaries, geomagnetic effects, and neutron monitor response in general, have been settled satisfactorily. Due to their long- term reliability and automated data acquisition, the remaining neutron monitors in the network are well suited for important future contributions in several areas. Amongst these are (a) spectral measurements, which require an optimal distribution along cutoff rigidities; (b) anisotropy studies, which require a set of neutron monitors with well-defined, narrow cones of acceptance for charged particles, covering all directions as evenly as possible; and (c) solar neutron measurements, which primarily require an even distribution in longitude, at high altitude and near the equator. Steps have already been taken to improve the network with these goals in mind, and to standardize methods. This contribution describes some of these steps and suggests further strategies to achieve the most optimal network. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Duldig  Marc L. 《Space Science Reviews》2000,93(1-2):207-226
Muon observations are complementary to neutron monitor observations but there are some important differences in the two techniques. Unlike neutron monitors, muon telescope systems use coincidence techniques to obtain directional information about the arriving particle. Neutron monitor observations require simple corrections for pressure variations to compensate for the varying mass of atmospheric absorber over a site. In contrast, muon observations require additional corrections for the positive and negative temperature effects. Muon observations commenced many years before neutron monitors were constructed. Thus, muon data over a larger number of solar cycles is available to study solar modulation on anisotropies and other cosmic ray variations. The solar diurnal and semi-diurnal variations have been studied for many years. Using the techniques of Bieber and Chen it has been possible to derive the radial gradient, parallel mean-free path and symmetric latitude gradient of cosmic rays for rigidities <200 GV. The radial gradient varies with the 11-year solar activity cycle whereas the parallel mean-free path appears to vary with the 22-year solar magnetic cycle. The symmetric latitudinal gradient reverses at each solar polarity reversal. These results are in general agreement with predictions from modulation models. In undertaking these analyses the ratio of the parallel to perpendicular mean-free path must be assumed. There is strong contention in the literature about the correct value to employ but the results are sufficiently robust for this to be, at most, a minor problem. An asymmetric latitude gradient of highly variable nature has been found. These observations do not support current modulation models. Our view of the sidereal variation has undergone a revolution in recent times. Nagashima, Fujimoto and Jacklyn proposed a narrow Tail-In source anisotropy and separate Loss-Cone anisotropy as being responsible for the observed variations. A new analysis technique, more amenable to such structures, was developed by Japanese and Australian researchers. They confirmed the existence of the two anisotropies. However, they found that the Tail-In anisotropy is asymmetric and that both anisotropies had different positions from the prediction. Most 27-day modulations are observed at neutron monitor rigidities but not so readily at higher rigidities. An exception to this is the Isotropic Intensity Wave modulation observed in the early 1980s and again in 1991. This modulation is very strongly related to the heliospheric sector structure and implies a significantly different cosmic ray density on either side of the neutral sheet. The interpretation of most cosmic ray modulation phenomena requires good latitude coverage in both hemispheres. The closure of many muon observatories is a matter of concern. In the northern hemisphere a few new instruments are being constructed and spatial coverage is barely adequate. In the southern hemisphere the situation is far worse with the possibility that within a decade only the Mawson observatory in Antarctica will still be in operation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Beginning in the early 1950s, data from neutron monitors placed the taxonomy of cosmic ray temporal variations on a firm footing, extended the observations of the Sun as a transient source of high energy particles and laid the foundation of our early concepts of a heliosphere. The first major impact of the arrival of the Space Age in 1957 on our understanding of cosmic rays came from spacecraft operating beyond the confines of our magnetosphere. These new observations showed that Forbush decreases were caused by interplanetary disturbances and not by changes in the geomagnetic field; the existence of both the predicted solar wind and interplanetary magnetic field was confirmed; the Sun was revealed as a frequent source of energetic ions and electrons in the 10–100 MeV range; and a number of new, low-energy particle populations was discovered. Neutron monitor data were of great value in interpreting many of these new results. With the launch of IMP 6 in 1971, followed by a number of other spacecraft, long-term monitoring of low and medium energy galactic and anomalous cosmic rays and solar and interplanetary energetic particles, and the interplanetary medium were available on a continuous basis. Many synoptic studies have been carried out using both neutron monitor and space observations. The data from the Pioneer 10/11 and Voyagers 1/2 deep space missions and the journey of Ulysses over the region of the solar poles have significantly extended our knowledge of the heliosphere and have provided enhanced understanding of many effects that were first identified in the neutron monitor data. Solar observations are a special area of space studies that has had great impact on interpreting results from neutron monitors, in particular the identification of coronal holes as the source of high-speed solar wind streams and the recognition of the importance of coronal mass ejections in producing interplanetary disturbances and accelerating solar energetic particles. In the future, with the new emphasis on carefully intercalibrated networks of neutron monitors and the improved instrumentation for space studies, these symbionic relations should prove to be even more productive in extending our understanding of the acceleration and transport of energetic particles in our heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Vitally important to the success of any mission is the ground support system used for commanding the spacecraft, receiving the telemetry, and processing the results. We describe the ground system used for the STEREO mission, consisting of the Mission Operations Center, the individual Payload Operations Centers for each instrument, and the STEREO Science Center, together with mission support from the Flight Dynamics Facility, Deep Space Mission System, and the Space Environment Center. The mission planning process is described, as is the data flow from spacecraft telemetry to processed science data to long-term archive. We describe the online resources that researchers will be able to use to access STEREO planning resources, science data, and analysis software. The STEREO Joint Observations Program system is described, with instructions on how observers can participate. Finally, we describe the near-real-time processing of the “space weather beacon” telemetry, which is a low telemetry rate quicklook product available close to 24 hours a day, with the intended use of space weather forecasting.  相似文献   

6.
An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (~3000 fA/cm2) and provide sufficient sensitivity (~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.  相似文献   

7.
Lockwood  J.A.  Debrunner  H. 《Space Science Reviews》1999,88(3-4):483-500
We discuss the important parameters of solar neutron and proton emissions that can be determined by measurements with neutron monitors at the Earth. First, the methods of analysis for solar neutron events detected by neutron monitors are presented. Illustrations are given to show how these measurements can be used to understand the physics of the neutron production at the Sun. Second, the analytical methods for high-energy interplanetary solar proton events are presented. We then indicate how these observations of interplanetary solar protons can be used to infer the proton acceleration mechanisms at or near the Sun. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Anomalous cosmic ray (ACR) intensities at 1 AU at solar minimum generally track galactic cosmic ray (GCR) intensities such as those measured by neutron monitors, albeit with differences between solar polarity cycles. The unusual cycle 23/24 solar minimum was long-lasting with very low sunspot numbers and significantly reduced interplanetary magnetic field strength and solar wind dynamic pressure and turbulence, but also featured a heliospheric current sheet tilt that remained high for an extended period. Peak ACR intensities did not recover to the maximum values reached during the last two A>0 solar minima and just barely reached the last A<0 levels. However, GCR intensities in 2009 (neutron monitor rates and also at ~200 MeV/nucleon) were the highest recorded during the last 50 years, indicating their intensities were not as heavily modulated during their transport from the outer heliosphere. This unexpected difference in the behavior of ACRs and GCRs remains unexplained, but suggests that either the ACR source intensity may have weakened since the last A<0 epoch, or perhaps that ACR intensities at 1 AU in the ecliptic may be more sensitive than GCRs to the higher tilt angle. This seems plausible if the ACR source intensity is greater at low latitudes during A<0 cycles, while the GCR distribution at the heliospheric boundary is more uniform in latitude. Shortly after an abrupt increase in the current sheet tilt angle in late 2009, both ACR and GCR intensities showed dramatic decreases, marking the end of solar minimum modulation conditions for this cycle.  相似文献   

9.
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth’s surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.  相似文献   

10.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   

11.
A model of the time evolving relativistic solar proton spectra for the 7 May 1978 ground level solar cosmic ray event is presented. This event, with associated cosmic ray neutron monitor increases of over 100% and containing relativistic particles with energies greater than 10 GeV/nucleon was characterized by an extreme anisotropy and a rapidly evolving spectrum, particularly during the initial phase. The observational data from cosmic ray neutron monitors viewing in the anti-Sun direction (180° away from the initial solar particle direction) indicates that a back scatter pulse of 4% of the primary pulse was observed at the Earth 20 min after the event onset. Previous attempts to model the solar particle spectrum found consistent and systematic differences between the theoretically calculated cosmic ray increase and the actual increase as observed by neutron monitors. In order to reconcile these differences, we have concluded that the observational data give evidence for a rigidity dependent release of relativistic solar protons from the solar corona during the very early stages of this event.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

12.
The invention of the neutron monitor pile for the study of cosmic-ray intensity-time and energy changes began with the discovery in 1948 that the nucleonic component cascade in the atmosphere had a huge geomagnetic latitude dependence. For example, between 0° and 60° this dependence was a ∼ 200–400% effect – depending on altitude – thus opening the opportunity to measure the intensity changes in the arriving cosmic-ray nuclei down to ∼1–2 GeV nucl−1 for the first time. In these measurements the fast (high energy) neutron intensity was shown to be a surrogate for the nuclear cascade intensity in the atmosphere. The development of the neutron monitor in 1948–1951 and the first geomagnetic latitude network will be discussed. Among its early applications were: (1) to prove that there exists interplanetary solar modulation of galactic cosmic-rays (1952), and; (2) to provide the evidence for a dynamical heliosphere (1956). With the world-wide distribution of neutron monitor stations that are presently operating (∼ 50) many novel investigations are still to be carried out, especially in collaborations with spacecraft experiments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
14.
A review is presented of solar neutron observation by ground-based neutron monitors (NM), focusing on the five solar neutron events of 1980 June 7, 1980 June 21, 1980 November 6, 1982 November 26, and 1984 April 25 observed by the Tokyo NM. These events are analyzed by comparison with the time profiles of gamma-rays observed by the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission (SMM) satellite and with the enhancements of counting rate observed at various NM stations in the solar neutron event of 1982 June 3.The energy range of solar neutrons observed by the NM is estimated in each event, based on some simple assumptions, using the gamma-ray data from the GRS and decay proton data from the ISEE-3 spacecraft. It is shown that these enhancements can be almost completely explained by the continuous emission of solar neutrons for several minutes at the flare. Finally, the effective detection and the newly found possibility to predict, in the short term, the occurrence time of a solar neutron event, and the plans for observation of solar neutrons by the ground-based NM stations are presented.  相似文献   

15.
In this brief review, we summarize the current state of knowledge of solar energetic particles. This includes energetic particles contained within the site of solar flares that are responsible for X-ray, γ-ray and neutron emission and particles accelerated at high coronal altitudes and in interplanetary space by travelling disturbances such as coronal mass ejections. Special emphasis is placed on those particles directly or indirectly associated with neutron monitor signals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
This paper reviews three important effects on energetic particles of corotating interaction regions (CIRs) in the solar wind that are formed at the leading edges of high-speed solar wind streams originating in coronal holes. A brief overview of CIRs and their important features is followed by a discussion of CIR-associated modulations in the galactic cosmic ray intensity, with an emphasis on observations made by spacecraft particle telescope ‘anti-coincidence’ guards. Such guards combine high counting rates (hundreds of counts/s) and a lower rigidity response than neutron monitors to provide detailed information on the relationship between cosmic ray modulations and CIR structure. The modulation of Jovian electrons by CIRs is then described. Finally, the acceleration of ions to energies of ~20 MeV/n in the vicinity of CIRs is reviewed.  相似文献   

17.
The transformation to net-centric operations necessitates evaluation of existing avionics capabilities, identification of deficiencies of these avionics for net-centric operations, and evaluation of alternative avionics that can provide the needed capabilities. The Global Information Grid (GIG) enables net-centric operations. The purpose of the GIG is to provide end users real-time or near-real-time access to multiple information sources ranging from airborne/satellite/ground sensors (video imagery and processed visual information/data) to databases. The end users in an aircraft view and interact with this information through the human system interface (HSI) or "smart" displays. The information is transmitted across a Gigabit Ethernet on-board the aircraft that interfaces with multiple channels of a software programmable radio that acts as a hub in the GIG network, or on-board sensors and processors. This paper presents the mandated capabilities, and the processes involved in determination of upgrades needed to achieve net-centric operations.  相似文献   

18.
CFD验证和确认是气动计算可信度分析的基本活动。通过这类活动将产生大量数据资源。如何有效管理和利用这些数据资源是基准数据库要解决的主要问题。研究并提出了一种可行的共享基准数据库设计方案,重点强调数据库的管理、数据库的可用性、数据的可靠性评估、数据标准和开放的系统架构,目的是提供建立用于CFD验证和确认的气动共享基准数据库的一种示范,解决现有气动数据库普遍存在的缺乏协调性、连贯性和必要的交流等诸多问题。此外,简要介绍了近年来中国在气动计算可信度分析方面所做的努力。  相似文献   

19.
High spectral resolution X-ray instruments on powerful X-ray satellites (e.g. Chandra, XMM-Newton) pointed through dust and gas at bright black holes and neutron stars can be used to study dust and intervening material in unique ways. With the new subfield of Condensed Matter Astrophysics as its goal, I will discuss current efforts to combine techniques and knowledge from condensed matter physics and astrophysics to determine the species-specific quantity and composition of interstellar gas and dust in the ISM and ionized environments. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters.  相似文献   

20.
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号