首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using numerical simulation, a mechanism of formation of polar cyclones in the region of location of the arctic front in the winter troposphere of the Northern Hemisphere is studied. The simulation was performed with the help of the complete system of gas dynamics equations taking into account the transport of infrared radiation, phase transitions of water vapor into micro-drops of water and ice particles, and with allowance made for sedimentation of these drops and ice particles in the gravity field. In the initial and boundary conditions of the model, observational data on the structure of dominating air flows in the region of the arctic front over Norwegian Sea in January are used. Formation of large-scale cyclonic vortex flows in 15–20 hours at the presence of a bend of the central line of the shear flow in the arctic front 500–600 km long with northward or southward deviations by 100 km and more is obtained numerically. On the basis of the simulation results, a method of short-term forecast of formation and motion of polar cyclones is suggested.  相似文献   

2.
M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.  相似文献   

3.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   

4.
Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.  相似文献   

5.
Powell J  Maise G  Paniagua J 《Acta Astronautica》2001,48(5-12):737-765
A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined.  相似文献   

6.
Bailey J 《Astrobiology》2007,7(2):320-332
Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.  相似文献   

7.
We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH < 100% and into their ability to act as cloud condensation nuclei (CCN) at RH > 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22?±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH < 100 %) could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds.  相似文献   

8.
With their similar size, chemical composition, and distance from the Sun, Venus and Earth may have shared a similar early history. Though surface conditions on Venus are now too extreme for life as we know it, it likely had abundant water and favorable conditions for life when the Sun was fainter early in the Solar System. Given the persistence of life under stabilizing selection in static environments, it is possible that life could exist in restricted environmental niches, where it may have retreated after conditions on the surface became untenable. High-pressure subsurface habitats with water in the supercritical liquid state could be a potential refugium, as could be the zone of dense cloud cover where thermoacidophilic life might have retreated. Technology based on the Stardust Mission to collect comet particles could readily be adapted for a pass through the appropriate cloud layer for sample collection and return to Earth.  相似文献   

9.
Moore SR  Sears DW 《Astrobiology》2006,6(4):644-650
We report measurements of the evaporation rate of water under Mars-like conditions (CO2 atmosphere at 7 mbar and approximately 0 degrees C) in which small temperature oscillations about the freezing point repeatedly formed and removed a thin layer of ice. We found that the average evaporation at 2.7 +/- 0.5 degrees C without an ice layer (corrected for the difference in gravity on Earth and on Mars) was 1.24 +/- 0.12 mm/h, while at -2.1 +/- 0.3 degrees C with an ice layer the average evaporation rate was 0.84 +/- 0.08 mm/h. These values are in good agreement with those calculated for the evaporation of liquid water and ice when it is assumed that evaporation only depends on diffusion and buoyancy. Our findings suggest that such differences in evaporation rates are entirely due to the temperature difference and that the ice layer has little effect on evaporation rate. We infer that the formation of thin layers of ice on pools of water on Mars does not significantly increase the stability of water on the surface of Mars.  相似文献   

10.
The jets of icy particles and water vapor issuing from the south pole of Enceladus are evidence for activity driven by some geophysical energy source. The vapor has also been shown to contain simple organic compounds, and the south polar terrain is bathed in excess heat coming from below. The source of the ice and vapor, and the mechanisms that accelerate the material into space, remain obscure. However, it is possible that a liquid water environment exists beneath the south polar cap, which may be conducive to life. Several theories for the origin of life on Earth would apply to Enceladus. These are (1) origin in an organic-rich mixture, (2) origin in the redox gradient of a submarine vent, and (3) panspermia. There are three microbial ecosystems on Earth that do not rely on sunlight, oxygen, or organics produced at the surface and, thus, provide analogues for possible ecologies on Enceladus. Two of these ecosystems are found deep in volcanic rock, and the primary productivity is based on the consumption by methanogens of hydrogen produced by rock reactions with water. The third ecosystem is found deep below the surface in South Africa and is based on sulfur-reducing bacteria consuming hydrogen and sulfate, both of which are ultimately produced by radioactive decay. Methane has been detected in the plume of Enceladus and may be biological in origin. An indicator of biological origin may be the ratio of non-methane hydrocarbons to methane, which is very low (0.001) for biological sources but is higher (0.1-0.01) for nonbiological sources. Thus, Cassini's instruments may detect plausible evidence for life by analysis of hydrocarbons in the plume during close encounters.  相似文献   

11.
The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours.Other challenges faced by these expeditions are quantitatively and qualitatively addressed.  相似文献   

12.
Single satellites and multisatellite constellations for the periodic coverage of the Earth are considered. The main feature is the use of several cameras with different swath widths. A vector method is proposed which makes it possible to find orbits minimizing the periodicities of coverage of a given area of Earth uniformly for all swaths. Their number is not limited, but the relative dimensions should satisfy the Fibonacci series or some new numerical sequences. The results apply to constellations of any number of satellites. Formulas were derived for calculating their structure, i.e., relative position in the constellation. Examples of orbits and the structure of constellations for the Earth’s multiswath coverage are presented.  相似文献   

13.
The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in controlling the chemical environments for life. Deep ocean basins such as the Mariana Trench are good analogues for the cold, high-pressure ocean of Europa. Many of the best terrestrial analogues for potential Europan habitats are in the Arctic and Antarctica. The six factors likely to be most important in defining the environments for life on Europa and the focus for future work are liquid water, energy, nutrients, low temperatures, salinity, and high pressures.  相似文献   

14.
《Acta Astronautica》2014,93(1):321-332
With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.  相似文献   

15.
The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.  相似文献   

16.
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.  相似文献   

17.
RD Lorenz 《Astrobiology》2012,12(8):799-802
Abstract Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K. Key Words: Planetary protection-Planetary environments-Ice-Titan. Astrobiology 12, 799-802.  相似文献   

18.
A general strategy for modeling ecosystems on other worlds is described. Two alternative biospheres beneath the ice surface of Europa are modeled, based on analogous ecosystems on Earth in potentially comparable habitats, with reallocation of biomass quantities consistent with different sources of energy and chemical constituents. The first ecosystem models a benthic biosphere supported by chemoautotrophic producers. The second models two concentrations of biota at the top and bottom of the subsurface water column supported by energy harvested from transmembrane ionic gradients. Calculations indicate the plausibility of both ecosystems, including small macroorganisms at the highest trophic levels, with ionotrophy supporting a larger biomass than chemoautotrophy.  相似文献   

19.
王亚敏  乔栋  崔平远 《宇航学报》2012,33(12):1845-1851
从月球逃逸探测小行星的发射机会搜索因需考虑日、地、月引力的影响而使问题变得复杂。针对该多体系统的发射机会搜索问题,提出了一种分层渐近的搜索方法。该方法首先通过分析地月系质心与小行星的几何关系,搜索从地月系质心到小行星的发射机会,进而以地月运动为研究对象,推导出了从月球轨道切向逃逸机会的判别条件,并基于此判别条件及等高线图法对逃逸机会进行了搜索。同时,为提高所得发射机会在多体模型下的轨道修正收敛性,给出了基于月心逃逸轨道参数为终端约束的日-地与日-地-月动力学模型的轨道渐近修正方法。最后,以近地小行星(3908)Nyx和(190491)2000 FJ20为例,搜索其从月球逃逸的发射机会,仿真计算表明了该方法的有效性。  相似文献   

20.
We investigate the process of the self-consistent formation of a thin current sheet with a thickness close to the ion Larmor gyroradius in the presence of decreasing magnetic field’s normal component Bn. This behavior is typical of the current sheet of the Earth’s magnetospheric tail during geomagnetic substorms. It has been shown that, in a numerical model of the current sheet, based on the particle-in-cell method, the appearance of self-consistent electric field component Ey in the current sheet vicinity can lead to its significant thinning and, eventually, to the formation of a multiscale configuration with a thin current sheet (TCS) in the central region supported by transient particles. The structure of the resulting equilibrium is determined by the initial parameters of the model and by the particle dynamics during the sheet thinning. Under certain conditions, the particle drift in the crossed electric and magnetic fields leads to a significant portion of ions becoming trapped near the neutral sheet and, in this way, to the formation of a wider configuration with an embedded thin current sheet. The population of trapped particles produces diamagnetic negative currents that manifest in the form of negative wings at the periphery of the sheet. Correspondingly, in the direction perpendicular to the sheet, a nonmonotonic coordinate dependence of the magnetic field appears. The mechanisms of the evolution of the current sheet in the Earth’s magnetotail and the formation of a multiscale structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号