首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
在转发式卫星测定轨系统中,基于伪码测距原理的星地距离测量是实现卫星精密定轨和高精度时间比对的基础。为获得高精度的星地距离,需要将地面站设备时延从伪码测距值中精确扣除。在转发式卫星测轨原理的基础上,提出了基于移动站的转发式地面站设备时延标校方法,实现了对转发式地面站设备时延的标校,标校精度能够优于0.5ns,对提高转发式卫星定轨精度和卫星双向时间比对精度具有重要作用。  相似文献   

2.
在转发式卫星测定轨系统中,基于伪码测距原理的星地距离测量是实现卫星精密定轨和高精度时间比对的基础。为获得高精度的星地距离,需要将地面站设备时延从伪码测距值中精确扣除。在转发式卫星测轨原理的基础上,提出了基于移动站的转发式地面站设备时延标校方法,实现了对转发式地面站设备时延的标校,标校精度能够优于0.5ns,对提高转发式卫星定轨精度和卫星双向时间比对精度具有重要作用。  相似文献   

3.
影响卫星自主轨道确定精度的主要因素包括动力学建模误差及测量误差。考虑动力学模型及测量均存在系统误差时,解决问题的一个途径是将这两种系统误差与卫星运动状态构成扩增状态后一同估计。为了保证滤波的稳定,就必须对此扩增系统的能观性进行分析。基于非线性系统的局部弱能观性理论,分析并给出了无摄动条件下单星自主定轨系统中卫星运动状态、建模误差及测量误差均能观的充要条件,即当轨道为圆轨道时增广系统处处不能观,当轨道不为圆轨道时处处能观。最后通过仿真算例对结论进行了验证,仿真结果显示对于非圆轨道,当建模误差及测量误差均为常值或慢时变时,采用扩展卡尔曼滤波算法对增广系统的状态估计是有效的。  相似文献   

4.
通过对无人机测控系统误差来源和贡献度分析,得到了测控系统测角、测距误差。采用标校杆对系统进行标校,制订了标校流程,解决了测控系统外场标校无固定标校塔的问题。在分析计算指令差错率的基础上,通过采取差错控制措施,有效降低了误指令率,可为其他同类系统误差分析提供参考和借鉴。  相似文献   

5.
为解决多传感器组网系统的系统误差估计问题,基于多传感器多目标上报信息,研究并提出了一种多传感器多目标系统误差融合估计算法.算法构建了两级融合结构,即第一级对多传感器组合状态估计信息进行反馈融合以改善局部组合状态估计精度,从而间接改善系统误差的估计精度,而第二级对多目标系统误差估计信息进行融合以进一步提高系统误差的估计精度.蒙特卡洛仿真显示算法能有效融合利用多传感器多目标信息,实现多传感器系统误差的实时精确估计.  相似文献   

6.
对航天测控信号进行滤波处理,有利于改善信号品质,提高系统的测量性能。针对航天测控信号中的差分单程测距(DifferentialOne-wayRanging, DOR)信标信号等侧音信号,提出了基于非抽取小波包变换(Un-decimatedWaveletPacketTransform,UWPT)的滤波改进算法。该算法以功率平坦度为准则,判断某一节点是否需要继续分解。改进算法克服了以能量聚焦度为准则时算法误判停止分解或多重分解算法复杂、计算量大等的缺点,同时解决了阈值不易确定的问题。仿真结果表明改进算法在降低算法复杂度的同时,滤波性能相对有所提高。最后采用改进算法对仿真信号和在轨卫星数据进行处理,结果表明滤波后仿真信号差分相位估计精度提高约3倍、实测数据差分相位估计精度提高0.72倍。  相似文献   

7.
在许多卫星测控系统中,使用标校塔信标信号进行自动校相存在一定的局限性。为了克服这些局限性,研究了一种新的校相体制,设计了地面校相信号模拟源产生校相所需的信号,进行自动校相。从理论上分析,设计的校相信号模拟源完全能满足系统自动校相的精度要求。这种校相体制可以应用于许多测控系统中,对研究测控系统的无塔标校具有指导意义。  相似文献   

8.
在基于伪距的GEO卫星精密定轨中, GEO卫星的静地特性导致定轨解算无法对星地组合钟差进行有效估计, 需要独立的时间同步支持. 本文讨论了卫星和测站钟差支持条件下的GEO卫星定轨原理, 利用仿真数据系统地分析了中国区域网跟踪条件下GEO卫星的定轨精度, 从定性和定量角度分析了钟差二次项、星地时间同步精度、站间时间同步精度及系统差等因素对定轨精度的影响.   相似文献   

9.
星载GPS几何法实时定轨有关问题的研究   总被引:2,自引:0,他引:2  
首先讨论了星载GPS几何法实时定轨的绝对定位方法和各种差分技术。由于伪距差技术能克服GPS卫星的星历误差、卫星钟误差,特别是SA误差的影响,而且实现难度不大,所以应用它来实时定轨。实测数据的处理表明,它能明显提高定轨的精度。然后分析了星载GPS所受扰动影响的情况,对应用抗差估计削弱GPS卫星信号扰动的影响进行了试验,试验的结果说明抗差估计能进一步提高星载GPS几何法定轨的精度。  相似文献   

10.
摘要: 对航天器星敏感间姿态测量基准偏差在轨标校及性能评估问题进行研究.建立包含敏感器安装误差与测量误差的星敏感器模型,针对两种不同形式的安装误差模型,推导出相应的观测方程,基于卡尔曼滤波方法设计相对基准偏差估计器,并比较分析两种估计器实际应用特点.然后针对在轨实际应用,给出一种基于敏感器光轴夹角的标校性能评估方法,通过数学仿真验证星敏感器相对基准偏差的标校的有效性,并基于在轨数据的标校应用获取相对基准偏差在轨特性.  相似文献   

11.
提出基于自适应滤波的编队卫星实时相对定轨算法,利用2005-12-09—10两颗GRACE(Gravity Recovery and Climate Experiment)卫星的GPS(Global Positioning System)实测数据进行实时相对定轨试验计算,采用JPL(Jet Propulsion Laboratory)轨道对试验结果外部检核,结果表明:①自适应滤波相对定轨通过自适应因子,可以较好地平衡编队卫星的观测信息和相对动力学信息,其相对定轨结果精度优于Kalman滤波相对定轨结果;②自适应滤波相对定轨结果随着星间基线缩短而精度提高;③两颗GRACE卫星采用单频伪距和广播星历进行自适应滤波相对定轨,可以得到精度优于6cm的星间基线。  相似文献   

12.
Clock error estimation has been the focus of a great deal of research because of the extensive usage of clocks in GPS positioning applications. The receiver clock error in the spacecraft orbit determination is commonly estimated on an epoch-by-epoch basis, along with the spacecraft’s position. However, due to the high correlation between the spacecraft orbit altitude and the receiver clock parameters, estimates of the radial component are degraded in the kinematic approach. Using clocks with high stability, the predictable behaviour of the receiver oscillator can be exploited to improve the positioning accuracy, especially for the radial component. This paper introduces two GPS receiver clock models to describe the deterministic and stochastic property of the receiver clock, both of which can improve the accuracy of kinematic orbit determination for spacecraft in low earth orbit. In particular, the clock parameters are estimated as time offset and frequency offset in the two-state model. The frequency drift is also estimated as an unknown parameter in the three-state model. Additionally, residual non-deterministic random errors such as frequency white noise, frequency random walk noise and frequency random run noise are modelled. Test results indicate that the positioning accuracy could be improved significantly using one day of GRACE flight data. In particular, the error of the radial component was reduced by over 40.0% in the real-time scenario.  相似文献   

13.
This study presents the results of calibration/validation (C/V) of Envisat satellite radar altimeter over Lake Issykkul located in Kyrgyzstan, which was chosen as a dedicated radar altimetry C/V site in 2004. The objectives are to estimate the absolute altimeter bias of Envisat and its orbit based on cross-over analysis with TOPEX/Poseidon (T/P), Jason-1 and Jason-2 over the ocean. We have used a new method of GPS data processing in a kinematic mode, developed at the Groupe de Recherche de Geodesie Spatiale (GRGS), which allows us to calculate the position of the GPS antenna without needing a GPS reference station. The C/V is conducted using various equipments: a local GPS network, a moving GPS antenna along the satellites tracks over Lake Issykkul, In Situ level gauges and weather stations. The absolute bias obtained for Envisat from field campaigns conducted in 2009 and 2010 is between 62.1 and 63.4 ± 3.7 cm, using the Ice-1 retracking algorithm, and between 46.9 and 51.2 cm with the ocean retracking algorithm. These results differ by about 10 cm from previous studies, principally due to improvement of the C/V procedure. Apart from the new algorithm for GPS data processing and the orbit error reduction, more attention has been paid to the GPS antenna height calculation, and we have reduced the errors induced by seiche over Lake Issykkul. This has been assured using cruise data along the Envisat satellite track at the exact date of the pass of the satellite for the two campaigns. The calculation of the Envisat radar altimeter bias with respect to the GPS levelling is essential to allow the continuity of multi-mission data on the same orbit, with the expected launch of SARAL/Altika mission in 2012. Implications for hydrology in particular, will be to produce long term homogeneous and reliable time series of lake levels worldwide.  相似文献   

14.
基于实时观测数据的大气密度模式修正   总被引:1,自引:0,他引:1  
针对国际大气密度模式NRLMSISE-00, 以中国神舟飞船探测数据为基础, 提出一种基于实时大气密度观测数据的模式修正方法. 通过计算分析模式计算结果与探测数据的误差分布特征, 针对地磁相对平静期(Ap≤ 30)模式计算的误差特点, 建立了一种平均误差修正方法, 即认为在相对平静期, 在相同纬度和地方时, 模式误差基本相同, 某一时刻模式预测误差可以近似用与其相同纬度和地方时的平均误差来替代, 从而对模式预测结果进行修正. 以神舟4号探测数据为基础, 通过对模式预测结果采用两种方式进行修正, 可以看到模式误差得到了一定的改善. 采用误差库累积准实时修正, 修正后的误差由原来的20 %降至6 %; 采用误差库5天滑动预报修正后, 模式提前1, 2, 3天的预测误差由原来的20 %分别降至7.8 %, 9.4 %和10.5%.   相似文献   

15.
In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10–13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.  相似文献   

16.
The Global Navigation Satellite System (GNSS) receivers equipped on the Haiyang-2D (HY-2D) satellite is capable of tracking the signals of both the third generation of BeiDou satellite navigation System (BDS-3) and the Global Positioning System (GPS), which make it feasible to assess the performance of real-time orbit determination (RTOD) for the HY-2D using onboard GNSS observations. In this study, the achievable accuracy and convergence time of RTOD for the HY-2D using onboard BDS-3 and GPS observations are analyzed. Benefiting from the binary-offset-carrier (BOC) modulation, the BDS-3 C1X signal includes less noise than the GPS C1C signal, which has the same signal frequency and chipping rate. The root mean squares (RMS) of the noises of C1X and C1C code measurements are 0.579 m and 1.636 m, respectively. Thanks to a ten-times higher chipping rate, the code measurements of BDS-3 C5P, GPS C1W and C2W are less noisy. The RMS of code noises of BDS-3 C5P, GPS C1W, and C2W are 0.044 m, 0.386 m, and 0.272 m, respectively. For the HY-2D orbit, the three-dimensional (3D) and radial accuracies can reach 31.8 cm and 7.5 cm with only BDS-3 observations, around 50 % better than the corresponding accuracies with GPS. Better performance of the BDS-3 in RTOD for the HY-2D is attributed to the high quality of its broadcast ephemeris. When random parameters are used to absorb ephemeris errors, substantial improvement is seen in the accuracy of HY-2D orbit with either BDS-3 or GPS. The 3D RMS of HY-2D orbit errors with BDS-3 and GPS are enhanced to 23.1 cm and 33.6 cm, and the RMS of the radial components are improved to 6.1 cm and 13.3 cm, respectively. The convergence time is 41.6 and 75.5 min for the RTOD with BDS-3 and GPS, while it is reduced to 39.2 and 27.4 min after the broadcast ephemeris errors are absorbed by random parameters. Overall, the achievable accuracy of RTOD with BDS-3 reaches decimeter level, which is even better than that with GPS, making real-time navigation using onboard BDS-3 observations a feasible choice for future remote sensing missions.  相似文献   

17.
Obtaining reliable GNSS uncalibrated phase delay (UPD) or integer clock products is the key to achieving ambiguity-fixed solutions for real-time (RT) precise point positioning (PPP) users. However, due to the influence of RT orbit errors, the quality of UPD/integer clock products estimated with a globally distributed GNSS network is difficult to ensure, thereby affecting the ambiguity resolution (AR) performance of RT-PPP. In this contribution, by fully utilising the consistency of orbital errors in regional GNSS network coverage areas, a method is proposed for estimating regional integer clock products to compensate for RT orbit errors. Based on Centre National d’Études Spatiales (CNES) RT precise products, the regional GPS/BDS integer clock was estimated with a CORS network in the west of China. Results showed that the difference between the estimated regional and CNES global integer clock/bias products was generally less than 5 cm for GPS, whereas clock differences of greater than 10 cm were observed for BDS due to the large RT orbit error. Compared with PPP using global integer clock/bias products, the AR performance of PPP using the regional integer clock was obviously improved for four rover stations. For single GPS, the horizontal and vertical accuracies of ambiguity-fixed PPP solutions were improved by 56.2% and 45.3% on average, respectively, whereas improvements of 67.5% and 50.5% in the horizontal and vertical directions, respectively, were observed for the combined GPS/BDS situation. Based on a regional integer clock, the RMS error of a kinematic ambiguity-fixed PPP solution in the horizontal direction could reach 0.5 cm. In terms of initialisation time, the average time to first fix (TTFF) in combined GPS/BDS PPP was shortened from 18.2 min to 12.7 min. In view of the high AR performance realised with the use of regional integer clocks, this method can be applied to scenarios that require high positioning accuracy, such as deformation monitoring.  相似文献   

18.
Since the United States government discontinued Selective Availability (SA) on 1 May 2000, ionospheric effects have been responsible for the largest errors in GPS systems. The standard Differential GPS (DGPS) method is incapable of completely eliminating the ionospheric error. This paper describes a new approach to determine the differential ionospheric error between geographically distributed receiver stations. The ray paths of GPS signals were simulated using a modified Jones 3D ray tracing programme that includes the effect of the geomagnetic field. A Nelder–Mead optimisation algorithm was embedded in the program to precisely determine the satellite-to-station path. A realistic ionospheric model is essential for accurate ray tracing results and for estimates of differential error that are accurate on sub-centimetre scales. Here, the ionospheric model used in the ray tracing programme was developed by fitting realistic ionosphere profiles with a number of exponential functions. Results were compared to the theoretical approach. Results show that the differential delay is about 1–5 cm at low elevation angles for a short baseline of 10 km, as reported in other literature. This delay is often neglected in DGPS application. The differential delay also shows a pattern similar to that predicted by the Klobuchar model. The method proposed here can be used to improve future GPS applications.  相似文献   

19.
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500–1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号