共查询到20条相似文献,搜索用时 218 毫秒
1.
火星着陆探测任务环节多、复杂度高、环境不确定性大,历史成功率低于50%。日前我国首次自主火星探测任务“天问一号”已取得圆满成功,在世界上首次一步实现“绕、落、巡”的火星探测。文章对火星着陆探测任务中考虑的火星环境要素及其量化条件的确定过程进行阐述,包括:探测器系统对环境条件的需求,基于此对火星空间环境、大气环境、表面环境各个要素的梳理分析,重点针对影响探测器进入、下降和着陆过程的环境条件进行量化,并确定偏差范围。实践证明以上设计为火星探测器着陆过程的控制和开伞等关键任务环节提供了重要的输入和约束,也为整个任务的圆满成功提供了有力保障。 相似文献
2.
Michalski JR Jean-PierreBibring Poulet F Loizeau D Mangold N Dobrea EN Bishop JL Wray JJ McKeown NK Parente M Hauber E Altieri F Carrozzo FG Niles PB 《Astrobiology》2010,10(7):687-703
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1?×?10? km2) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150?m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability. 相似文献
3.
With a maximum time of 12 days out of ground contact and a round-trip light time as high as 56 minutes, The Near Earth Asteroid Rendezvous (NEAR) spacecraft requires a moderate degree of onboard autonomy to react to faults and safe the spacecraft. Beyond the basic safing requirements, additional functions are carried out onboard. For example, on-board calculation of the Sun, Earth, asteroid, and spacecraft positions allow the spacecraft to autonomously orient itself for science and downlink operations. On-board autonomous momentum management during cruise relieves Mission Operations from planning, scheduling, and carrying out many manual momentum dumps. During development, additional operations, such as center-of-mass management during propulsive maneuvers and optical navigation were also considered for onboard autonomy on the NEAR spacecraft, but were not selected. The allocation of functions to onboard software or to ground operations involved tradeoffs such as development time for onboard software versus ground software, resource management, life cycle costs, and spacecraft safety.After two years of cruise operations, considerable experience with the NEAR autonomy system has accrued. The utility of some autonomous capabilities is greater than expected, others less so. Software uploads increased spacecraft autonomy in some cases, and the impact on Mission Operations can be assessed. Allocation of functions between spacecraft autonomy and ground operation during development of future missions can be improved by applying the lessons learned from the NEAR experience. 相似文献
4.
An intercept mission with nuclear explosives is the most effective of the practical mitigation options against the impact threat of near-Earth objects (NEOs) with a short warning time (e.g., much less than 10 years). The existing penetrated subsurface nuclear explosion technology limits the intercept velocity to less than approximately 300 m/s. Consequently, an innovative concept of blending a hypervelocity kinetic impactor with a subsurface nuclear explosion has been developed for optimal penetration, fragmentation, and dispersion of the target NEO. A proposed hypervelocity asteroid intercept vehicle (HAIV) consists of a kinetic-impact leader spacecraft and a follower spacecraft carrying nuclear explosives. This paper describes the conceptual development and design of a baseline HAIV system and its flight validation mission architecture for three mission cost classifications (e.g., $500 M, $1 B, and $1.5 B). 相似文献
5.
Peter G. Roma Steven R. Hursh Robert D. Hienz Henry H. Emurian Eric D. Gasior Zabecca S. Brinson Joseph V. Brady 《Acta Astronautica》2011,68(9-10):1581-1588
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions. 相似文献
6.
The idea of deploying a lander on the secondary body of the binary primitive asteroid (175706) 1996 FG3 is investigated. 1996 FG3 is the backup target of the European sample return space mission MarcoPolo-R under assessment study at the European Space Agency in the framework of the M3 Medium-Class mission competition. The launch will take place in 2022–2024, depending on its selection at the end of 2013. A lander is indicated as an optional payload, depending on mass availability on the spacecraft. Obviously, the possible complexity of a lander deployment is also an important parameter to take into account. Here we demonstrate that, considering worst case scenarios and low requirements on the spacecraft GNC and deployment mechanism, the operations are easy to implement and safe for the main spacecraft. The concept of operations is to deploy a light lander from the L2 Lagrange point of the binary system, on a ballistic trajectory that will impact the secondary asteroid. The fundamental principles of this strategy are briefly presented and a detailed model of 1996 FG3 is considered, to which the strategy is applied. We show that the deployment is successful in 99.94% of cases. 相似文献
7.
M. V. Zakhvatkin Yu. N. Ponomarev V. A. Stepan’yants A. G. Tuchin G. S. Zaslavskiy 《Cosmic Research》2014,52(5):342-352
A developed method of determination of orbital parameters allows one to estimate, along with orbit elements, some additional parameters that characterize solar radiation pressure and perturbing accelerations due to unloadings of reactiion wheels. A parameterized model of perturbing action of solar radiation pressure on the spacecraft motion is described (this model takes into account the shape, reflecting properties of surfaces, and spacecraft attitude). Some orbit determination results are presented obtained by the joint processing of radio measurements of slant range and Doppler, laser range measurements used to calibrate the radio measurements, optical observations of right ascension and declination, and telemetry data on spacecraft thrusters’ firings during an unloading of reaction wheels. 相似文献
8.
B. I. Zhukov Yu. K. Zaiko V. N. Likhachev Yu. G. Sikharulidze A. G. Tuchin V. P. Fedotov 《Cosmic Research》2013,51(6):465-477
The paper deals with a choice of the rational trajectory of motion of a landing module designed for the Moon landing, from the moment of its de-orbiting from the near-lunar orbit up to landing. An integrated conceptual basis is used to develop multistep terminal algorithms for guidance for the three segments of the descent. 相似文献
9.
The European Space Agency (ESA) has decided to carry out a fly-by mission to the comet Halley. The spacecraft will be launched by an ARIANE II and intercept the retrograde Halley orbit on 13 March, 1986. One group of experiments is designed to obtain data on size, mass and composition of the dust in the cometary tail. Because of the very high relative velocity during fly-by (69 km/s) laboratory experiments are necessary to develop and calibrate the experiments. These experiments are presently under way in the laboratory of the Lehrstuhl für Raumfahrttechnik of the Technische Universität München. First results have been obtained for both the Dust Impact Detection System (DIDSY) and the P?articulate Impact Analyzer (PIA). These results are compared with the theoretical models for hypervelocity impact craters. The agreement is good at impact velocities around 15 km/s. 相似文献
10.
Papagiannis MD 《Acta Astronautica》1983,10(10):709-712
Following life's innate tendency to expand into every available space, technological civilizations will inevitably colonize the entire galaxy establishing space habitats around all its well-behaved stars. The most reasonable place in our solar system to test this possibility is the asteroid belt, which is an ideal source of raw materials for space colonies. 相似文献
11.
E. Igenbergs 《Acta Astronautica》1984,11(5):263-268
The Long Duration Exposure Facility (LDEF) is an experiment carrying structure, which will be transported into a near earth orbit by the Space Transportation System of the U.S.A., where it will remain for approx, one year and then be brought back to Earth. A group of experiments investigates the cosmic dust environment. This paper describes the principle of a micro-meteoroid capture-cell experiment which has been accepted for the first LDEF flight in 1984. The development of the components and the tests conducted with the prototype are discussed together with the analysis of the simulation results using a secondary ion mass spectrometer (SIMS). 相似文献
12.
13.
14.
随着中国深空探测的发展,在月球表面进行着陆探测成为新的关注热点,因此月球着陆器的着陆稳定性研究成为一项重要课题。文章利用ADAMS软件及其用户子程序,对一种可展开四腿式月球着陆器的着陆稳定性进行了研究,研究结论为着陆器的着陆缓冲机构及总体设计提供参考。 相似文献
15.
N.K. Philip V. Chinnaponnu E. Krishnakumar P. Natarajan V.K. Agrawal N.K. Malik 《Acta Astronautica》2009,64(2-3):127-138
This paper describes the attitude control schemes for the various phases such as acquisition, on-orbit, orbit maneuver, de-boost maneuvers and coast phases of the India's first recovery mission Space Capsule Recovery Experiment-I (SRE-1). During the on-orbit phase, the SRE was configured to point the negative roll axis to Sun. The attitude referencing of SRE-1 was based on dry tuned gyros with updates from the attitude determined using on-board Sun sensors and magnetometer. For attitude acquisition, attitude maneuvers and for providing the velocity corrections for de-orbiting operations; a set of eight thrusters grouped in functionally redundant blocks were used. The control scheme with thrusters was based on proportional derivative controller with a modulator. In order to ensure micro-gravity environment during the on-orbit payload operations a linear quadratic regulator (LQR) based control scheme was designed to drive an orthogonal configuration of magnetic torquers which in turn produced three-axis control torque with the interaction of Earth's magnetic field. Proportional derivative control scheme with modulator was designed to track the steering commands during the velocity reduction as well as during the coasting phase of the de-orbiting operations. A novel thruster failure detection, isolation and reconfiguration scheme implemented on-board for the de-orbiting phase is also discussed in this paper. 相似文献
16.
着陆缓冲机构是着陆器借以实现安全、稳定软着陆的一种重要装置。鉴于着陆初始条件的多样性,系统级缓冲性能需在有限的试验工况中进行充分验证。文章基于“阿波罗”登月舱3类相关试验方法,提出了一种无需额外设计和加工试验件,无需模拟其他重力场,在地球重力场下的全尺寸模型试验方法。在对各着陆初始条件大量组合工况的仿真结果统计分析后,给出了试验验证工况的确定原则;明确了试验实施过程中的质量配比原则、地球重力场对试验的影响、地貌特征模拟方法及试验测量参数与数据处理要求。该方法对于后续深空探测以及载人登月着陆缓冲机构综合缓冲性能的试验验证具有指导意义。 相似文献
17.
Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth. 相似文献
18.
E. A. Gonzaga 《Cosmic Research》2010,48(5):459-466
The planet Earth has endured unwelcome “visitations” of space rocks many times. NASA and agencies of other nations have proposed concepts on how asteroids, in possible collision with planet Earth, can be diverted. These methods range from impulsive techniques using explosives, conventional and nuclear, to the slow nudging action of a spacecraft with powerful thrust. A methods not described elsewhere in any research, as far as the author knows, is presented in this paper. The methods of electrostatics will be employed to show how the new deflection concept can be developed to avoid asteroid collision with Earth. 相似文献
19.
20.
Dipak K. Srinivasan David Artis Ben Baker Robert Stilwell Robert Wallis 《Acta Astronautica》2009,65(11-12):1639-1649
The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and thus data volume. 相似文献