首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long term continuous operation of the COLUMBUS Orbital Facility (COF) flight- and ground segment requires continuous mission control and operations support capability to ensure proper operation and configuration of the COF systems in support of ongoing science and technology payloads. The ISS logistics scenario will be supported by the Automated Transfer Vehicle (ATV). These operational needs require the built-up of a new ground infrastructure in Europe and USA, enabling an efficient operations for preparation, planning and mission execution. The challenge for the European space community consists in the development and operation of a user friendly operational environment but keeping costs within budgetary constraints. Results of detailed definition studies performed by both agency and industry for the ground infrastructure indicate solutions to those technical and programmatic requirements by using of existing centers and facilities, re-use of C/D phase products (Hardware, Software) and COTS equipment to avoid costly new developments, using engineering expertise of the industrial personnel from flight element phase C/D. The concept for operations execution defines the task sharing between Operations Control Facilities (OCF), Operations Support Facilities and User Operations Sites. Operations support consists of on-line engineering support, off-line engineering support, payload integration, logistics support and crew training support performed by industry. DASA RI has made internal investments in organizational concepts for mission operations as well as in mission technologies and tools based on the standard COLUMBUS Ground Software (CGS) toolset and on knowledge based systems to enable an efficient industrial operations support. These tools are available as prototypes being evaluated in a simulated operational environment.  相似文献   

2.
With the advances of small satellite technology in commercial space sector, using small satellite networks to form a satellite constellation and conduct commercial operational services has entered into a vigorous phase of development. As small satellite technology develops, problems in the operations of small satellite constellations are also gradually emerging. These include ground measurement and operational control systems for small satellite constellations, the commercial operational mode, support and the guarantee of laws and regulations related to small satellites. This report discusses the development of commercial space small satellite operation industrialization, explores the small satellite operational modes and technological innovation, proposes the commercial space industry chain to build the industry ecology. At the same time, it looks forward to the integration of space and terrestrial communication. It also calls on relevant organizations of China to speed up the process of space legislation, formulate the relevant policies to encourage the operations of small satellites in commercial space sector, and push China's commercial space to a new level.  相似文献   

3.
Canada and the International Space Station program: overview and status   总被引:4,自引:0,他引:4  
Gibbs G  Sachdev S 《Acta Astronautica》2002,51(1-9):591-600
The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have now participated in three ISS assembly missions--Julie Payette on STS-96, Marc Garneau on STS-97, and Chris Hadfield on STS-100 in April 2001 during which he performed Canada's first EVA and the successful installation of the Space Station Remote Manipulator System.  相似文献   

4.
5.
ISRO has developed the PSLV rocket (Polar Spacecraft Launch Vehicle) for polar orbiting satellites up to 1000 kg and is conducting a series of test missions. One of this is the IRS-P3, an remote sensing satellite with German participation. The payload consists of 3 scientific instruments: The wide field sensor WiFS for vegetation monitoring (ISRO), the imaging spectrometer MOS (DLR/Germany) for coastal zone and ocean studies an the X-ray astronomy payload (ISRO). The paper gives technical details and parameters on the launch vehicle, the satellite, the instruments and scientific goals and data utilization.  相似文献   

6.
网电一体战的作战目标是破坏和控制敌方的信息基础和战略命脉,摧毁和致瘫敌方的作战指挥控制系统.分析了网电空间战的一般特点和军事特点,并结合网电攻击的案例分析了其对未来防空战争的影响,其影响主要表现在:作战空间由“地表维”和“垂直维”延伸至“网电维”,利用和控制网电空间将成为未来防空作战的主题,网电空间对抗成为提升未来防空作战能力的核心.  相似文献   

7.
Potential users of the pressurised Columbus elements, (the Attached Pressurised Module and the Man-Tended Free Flyer), were consulted in order to establish the requirements necessary to achieve effective and efficient remote interactive payload operations. These are briefly described and clearly indicate that the key to such operations is a versatile remote visual access (video) system which is well-tuned to the requirements of the users in both the on-board and ground segments. A packetised remote visual access data system is proposed which accommodates these requirements and offers a very flexible operational environment. It incorporates a scheme for optimising users' remote visual access to their experiments. Methods of implementing the necessary multiplexing and compression aspects of the system are discussed. A scheme for centralized on-board monitoring, which is complicated by the wide range of video sources required by the users, is outlined and aspects of the ground segment, in particular the problem is link delays, are considered.  相似文献   

8.
The Space Station Freedom will be a permanently manned, low-Earth orbit research facility, elements of which are being provided by the United States, Canada, countries of the European Space Agency and Japan. The facility will be assembled in space and operated well into the twenty-first century. The ground infrastructure must be able to support both assembly and long-term operations. The infrastructure will consist of ground facilities, support systems and the associated planning and management procedures. The key facilities identified to support Space Station Freedom Program (SSFP) integrated operations and their SSFP roles will be described in detail in this paper.

Requirements for the integrated ground infrastructure are developed and controlled within the SSFP requirements documentation and baselining processes. A Ground Systems Program directive summarizes key operations functions, roles and responsibilities of the various program participants. During 1992, the SSFP is conducting a major program review of the ground infrastructure including the definition of all facility and support system functional capabilities, interfaces and dataflow requirements. Operations functionality and interface verification tests are being identified and operations readiness dates are being established.  相似文献   


9.
未来联合作战呈现出体系对抗体系的特点,为满足作战需求对武器装备体系设计提出了更高的要求,实现动态作战环境下武器装备体系结构建模和评估是体系设计中的重要内容。基于联合作战背景下的远程专家保障装备体系想定,从体系作战需求角度出发通过SysML(系统建模语言)建立体系结构模型,设计远程专家保障装备体系结构视图产品,结合ExtendSim建立了可执行模型,并进行仿真分析和结构评估,为提升体系能力提出有效可行的建议。  相似文献   

10.
空间信息对抗装备体系是完成空间信息对抗作战任务的所有对抗装备及系统的总称,即在空间信息对抗战场中所能够使用的一切装备,涵盖外层空间、空中、地面、海上以及整个信息网络。利用系统分析的方法,在详细分析空间信息对抗作战特点和作战原则的基础上,重点开展了空间信息对抗装备体系的构成及各部分作战性能研究,建立了空间信息对抗装备体系组成框架,并分析了空间信息对抗武器装备发展趋势。  相似文献   

11.
M.Y.S. Prasad   《Space Policy》2005,21(4):243-249
This article briefly presents the historical background, as seen by ISRO and India, to the growing problem of space debris. It describes the technical aspects of ISRO's activities in the field of space debris, and the grey areas in technical understanding, which may impede legal discussions. Analysis of the cost and technical aspects of reorbiting satellites from geostationary Earth orbit (GEO) is detailed, since this is an important area for India and other developing countries. The article also briefly describes ISRO's views of the applicability and relevance of the existing space treaties to a possible future legal regime for space debris. Debates are currently taking place in the UN and other multilateral fora on the subject of space debris and the situation is dynamic. The main aim of this article is to inform readers of ISRO's and India's position in the UN on the subject of space debris, in terms of its technical, political and legal aspects. Certain issues of importance from the legal point of view, though not of immediate urgency, are also discussed.  相似文献   

12.
Future space systems, such as Columbus, the planned European contribution to the International Space Station, offer ample possibilities for microgravity research and application. These new opportunities require adequate user support on ground and novel operational concepts in order to ensure an effective utilization. Extensive experience in microgravity user support has been accumulated at DFVLR during the past Spacelab 1 and D1 missions. Based on this work, a Microgravity User Support Centre (MUSC) has been built and is active for the forthcoming EURECA-A1 and D2 missions, to form an integrated support centre for the disciplines life sciences and material sciences in the Space Station era. The objective of the user support at MUSC is to achieve:
• easy access to space experiments for scientific and commercial users,
• efficient preparation of experiments,
• optimum use of valuable microgravity experimentation time,
• cost reduction by concentration of experience.
This is implemented by embedding the MUSC in an active scientific environment in both disciplines, such that users can share the experience gained by professional personnel. In this way, the Space Station system is operated along the lines established on ground for the utilization of large international research facilities, such as accelerators or astronomical observatories. In addition, concepts are developed to apply advanced telescience principles for Space Station operations.  相似文献   

13.
《Acta Astronautica》1987,15(9):697-701
This paper describes rationale, criteria and resulting concepts and problematics related to Columbus/Space Station operations.Its content, whilst acknowledging basic operational principles developed by NASA, is based on ESA and European National studies and its conclusions illustrate a consistent and coherent European approach.Starting with the European experience in unmanned and manned operations, the essential new features of the operation of the foreseen manned orbital infrastructure are briefly described. The main aspects governing the approach to future space operations design and implementation are highlighted and criteria for assessing this implementation are discussed.This is followed by illustrative discussion of how specific operational functions can be implemented.Problems and unresolved issues are also identified. rf;)  相似文献   

14.
伴飞诱饵支援条件下无人飞行器协同作战效能研究   总被引:2,自引:0,他引:2  
针对复杂的威胁环境,介绍了伴飞诱饵在体系作战条件下的应用情况;基于排队论的突防概率模型,研究了伴飞诱饵支援条件下,无人飞行器的协同突防概率和效费比:提出了作战体系作战时效性的概念;建立了火力对抗条件下无人飞行器打击防空导弹防御体系的Lanchester方程,利用所建模型分析了伴飞诱饵对作战时效性的贡献。研究表明,排队论和Lanchester方程用于伴飞诱饵条件下的无人飞行器协同作战效能研究是有效的。  相似文献   

15.
The unified synoptic system (USS) was developed by ESA for replacing the existing Columbus display solutions and to unify the display system used on-board and on-ground. USS provides enhanced flight operations efficiency and reduced effort for product preparation, qualification and maintenance for synoptic displays. Additional to its use for Columbus it is installed at JAXA and NASA to support requirements definition and review of NASA generated ISS displays. Due to its advanced capabilities, which go beyond existing known solutions, it has been made available to be reused for future spacecraft EGSEs and control centres (e.g. exploration missions, satellites) as well. Use of synoptic display is mostly guided by operational procedures which are in electronic format. However, till now the full operational benefit has not yet been realized. Procedure viewers and synoptic display systems are completely separate entities. Direct interaction of procedure viewers with synoptic display systems or underlying system control software is not supported at all. Therefore astronauts, flight controllers and operators still have to carry out a lot of mundane activities when executing operational procedures. The USS based procedural display viewer provides the user with a coherent, task oriented user interface for using synoptic displays and executing procedures in an efficient manner.  相似文献   

16.
Space manipulators are complex systems, composed by robotic arms accommodated on an orbiting platform. They can be used to perform a variety of tasks: launch of satellites, retrieval of spacecraft for inspection, maintenance and repair, movement of cargo and so on. All these missions require extreme precision. However, in order to respect the mass at launch requirements, manipulators arms are usually very light and flexible, and their motion involves significant structural vibrations, especially after a grasping maneuver. In order to fulfill the maneuvers of space robotic systems it is hence necessary to properly model the forces acting on the space robot, from the main terms, such as the orbital motion, to the second order perturbations, like the gravity gradient and the orbital perturbations; also flexible excitation of the links and of the joints can be of great importance in the manipulators dynamics. The case is furthermore complicated by the fact that the manipulator, together with its supporting spacecraft, is an unconstrained body. Therefore the motion of any of its parts affects the entire system configuration. The governing equations of the dynamics of such robotic systems are highly nonlinear and fully coupled. The present paper aims at designing and studying active damping strategies and relevant devices that could be used to reduce the structural vibrations of a space manipulator with flexible links during its on orbit operations. In particular an optimized adaptive vibration control via piezoelectric devices is proposed. The number of piezoelectric devices, their placement and operational mode should be correctly chosen in order to obtain maximum performance in terms of elastic oscillations reduction and power consumption. Even though an optimal placement cannot have a universal validity, since it depends on the type of maneuver and on the overall inertial and geometrical characteristics, an approach to solve the problem is proposed.  相似文献   

17.
The International Space Station (ISS) is no longer a paper program, focused on design, development and planning. It is an operational program, with hardware soon to be launched and ground systems in place. Additional modules, components and elements are now under construction in almost all of the 16 ISS International Partner and Participant countries, with metal being bent, software being written, and testing ongoing. Crew members for the first four crews are in training in the U.S. and Russia, with the first crew launching in mid 1999. Mission control centers are fully functioning in Houston and Moscow, with operations centers in St. Hubert, Darmstadt, Tsukuba, Turino, and Huntsville going on line as they are required.

The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven international partners and participants encompassing 15 countries are involved in the ISS. Each partner is contributing and will be operating separate pieces of hardware, to be integrated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/cosmonauts, and support services will be provided by partners across the globe, but must function in a coordinated, integrated fashion. This paper will review the accomplishments of the ISS Program and each of the Partners and Participants over the past year, focusing on completed milestones and hardware. It will also give a status report on the development of the remainder of the ISS modules and components by each Partner and Participant, and discuss upcoming challenges.  相似文献   


18.
《Acta Astronautica》1986,13(10):607-621
The JANUS multimission platform has been designed to minimize the cost of the satellite (by a maximum reuse of equipment from other proprogrammes) and of its associated launch by Aŕiane (by a piggy-back configuration optimized for Ariane 4).The paper describes the application of the JANUS platform to an Earth observation mission with the objective to provide a given country with a permanent monitoring of its earth resources by exploitation of spaceborne imagery. According to this objective, and to minimize the overall system and operational cost, the JANUS Earth Observation Satellite (JEOS) will provide a limited coverage with real time transmission of image data, thus avoiding need for on-board storage and simplifying operations.The JEOS operates on a low earth, near polar sun synchronous orbit. Launched in a piggy-back configuration on Ariane 4, with a SPOT or ERS spacecraft, it reaches its operational orbit after a drift orbit of a few weeks maximum. In its operational mode, the JEOS is 3-axis stabilised, earth pointed.After presentation of the platform, the paper describes the solid state push-broom camera which is composed of four optical lenses mounted on a highly stable optical bench. Each lens includes an optics system, reused from an on-going development, and two CCD linear arrays of detectors. The camera provides four registered channels in visible and near IR bands. The whole optical bench is supported by a rotating mechanism which allows rotation of the optical axis in the across-track direction. The JEOS typical performance for a 700 km altitude is then summarized: spatial resolution 30 m, swath width 120 km, off-track capability 325 km,…The payload data handling and transmission electronics, derived from the French SPOT satellite, realizes the processing, formatting, and transmission to the ground; this allows reuse of the standard SPOT receiving stations. The camera is only operated when the spacecraft is within the visibility of the ground station, and image data are directly transmitted to the ground station by the spacecraft X-band transmitter.Finally, the paper presents a set of typical Earth observation missions which can be realized with JEOS, for countries which wish to have their own observation system, possibly also as a complement to the SPOT and/or LANDSAT observation data.  相似文献   

19.
电子信息系统及其网络在信息战争中的重要性,决定了它必将成为战争中的首要攻击目标。这种攻击已不再局限于火力摧毁和电子干扰等传统手段,正逐步演变成为信息战争中一种全新的作战模式,即赛博空间作战。赛博空间作战目前还不成熟,有些技术还处于发展阶段,有些理论还处于探索阶段。简要阐述美国赛博空间作战概念及其对赛博空间作战能力的要求,指出了赛博空间作战的作用和应考虑的问题。  相似文献   

20.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号