首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
McMath Plage 15266, which transited the solar disk during Carrington Rotation 1667, gave rise during its passage to a spectacular sequence of five proton producing flares. Solar circumstances leading up to the formation of the active plage are described. An account is given of the magnetic affiliations and optical characteristics of the flares themselves, and it is suggested that four of these events might be interpreted as two twin phase flares displaying secondary maxima and minima such that the second phase in each case could in some sense be deemed a consequence of phenomena initiated during the first phase. Those particle phenomena associated with the observed activity are reviewed, and it is suggested that the azimuthal propagation of solar cosmic rays in the corona may occur more efficiently for flares at eastern longitudes in which the magnetic axis is aligned in a roughly north to south rather than an east-to-west direction.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

2.
Gradual solar energetic particle (SEP) events are evidently accelerated by coronal/interplanetary shocks driven by coronal mass ejections. This talk addresses the different factors which determine the composition of the accelerated ions. The first factor is the set of available seed populations including the solar wind core and suprathermal tail, remnant impulsive events from preceding solar flares, and remnant gradual events. The second factor is the fractionation of the seed ions by the injection process, that is, what fraction of the ions are extracted by the shock to participate in diffusive shock acceleration. Injection is a controversial topic since it depends on the detailed electromagnetic structure of the shock transition and the transport of ions in these structured fields, both of which are not well understood or determined theoretically. The third factor is fractionation during the acceleration process, due to the dependence of ion transport in the turbulent electromagnetic fields adjacent to the shock on the mass/charge ratio. Of crucial importance in the last two factors is the magnetic obliquity of the shock. The form of the proton-excited hydromagnetic wave spectrum is also important. Finally, more subtle effects on ion composition arise from the superposition of ion contributions over the time history of the shock along the observer’s magnetic flux tube, and the sequence of flux tubes sampled by the observer.  相似文献   

3.
4.
The configuration, and the structure of shock waves from isolated solar flares and from a series of flares are discussed and classified.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

5.
G. Mann 《Space Science Reviews》1994,68(1-4):199-203
Shock waves in the solar corona manifest themselves in type II bursts in dynamic radio spectra. Recently, short large amplitude magnetic structures (SLAMS) have been observed in the vicinity of the quasi-parallel region of Earth's bow shock as an example of a collisionless shock wave in space plasmas. SLAMS are able to accelerate electrons to high energies by shock drift acceleration. Assuming that SLAMS also appear in the vicinity of super-critical, quasi-parallel shocks in the corona, electrons can also be accelerated at quasi-parallel shocks and, subsequently, generate radio waves manifesting in solar type II radio bursts.  相似文献   

6.
Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping.The basic data used in this review have been collected by many workers throughout the world utilizing a variety of instruments such as fixed frequency radiometers, multi-element interferometers, dynamic spectrum analysers and polarimeters. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplanetary space. It appears to us that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. Observational limitations of the current ground-based experimental techniques have been pointed out and a suggestion has been made to evolve appropriate observational facilities for solar work before the next Solar Maximum Year (SMY).  相似文献   

7.
Large solar flares are often accompanied by both emissions of high-energy quanta and particles. The emissions such as gamma-ray and hard X-ray photons are generated due to the interaction of high-energy nuclei and electrons with gases ambient in the flare regions and the solar atmosphere. Nonthermal radio emissions of wide frequency band are produced from energetic electrons while being decelerated by the action of plasmas and magnetic fields ambient in the flare site and its neighboring region. To understand the emission mechanism of these high-energy quanta on the Sun, it is, therefore, necessary to find the acceleration mechanism for both nuclei and electrons, which begins almost simultaneously with the onset of solar flares.A part of the accelerated nuclei and electrons are later released from the solar atmosphere into the outer space and eventually lost from the space of the solar system. Their behavior in the interplanetary space is considered to study the large-scale structure of plasmas and magnetic fields in this space.The observations and studies of high-energy phenomena on the Sun are thus thought of as giving some crucial hint important to understand the nature of various high-energy phenomena being currently observed in the Universe.  相似文献   

8.
The greatest coronal and interplanetary disturbances are considered consequences of complex processes accompanying development of large-flare regions. Such regions not only possess a specific magnetic field configuration, but their magnetic topology develops following certain rules within the frame of slowly changing large-scale distribution of the background magnetic field patterns as a result of the mutual influences of new magnetic flux appearance as well as old field weakening and dissipation. In this paper we try to demonstrate the individual phases of the large-scale long lasting magnetic field pattern formation with their morphological characteristics and magnetic field configurations. The time scale of the whole process is shown, and the possible reasons of such development are discussed. The proton flare regions of August 1972 and July 1974 are used as examples of the successive magnetic field complication and strengthening, the result of which is the appearance of still more complicated magnetic and velocity fields that produces proton flares and then the fast disintegration of the whole magnetic situation occupying more than one half of the visible solar surface following the occurrence of the proton flares. The consequences which may be used for the proton flare prediction are discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

9.
Interplanetary shock observations since the prior Solar Terrestrial Physics Symposium in 1978 are reviewed. Since the interval coincides with the recent solar maximum, emphasis is placed on shocks associated with transient solar phenomena, including coronal transients and eruptive prominences as well as flares. A good correlation between shocks and Storm Sudden Commencements has persisted into the recent maximum. Shocks have been identified that are associated with disappearing filaments and coronal transients rather than with flares. Significant progress has been made in the indirect observation of shocks near the Sun as a result of radio wave measurements in interplanetary space and measurement of the scintillation and spectral broadening of spacecraft radio transmissions. Preliminary results regarding the thickness of interplanetary shocks have appeared. Several quasi-parallel shocks propagating more nearly along, rather than across, the magnetic field have been identified. The plasma drivers accompanying interplanetary shocks have received increased attention and distinctive features have been found in electron, ion and magnetic field data.  相似文献   

10.
The Two Sources of Solar Energetic Particles   总被引:2,自引:0,他引:2  
Evidence for two different physical mechanisms for acceleration of solar energetic particles (SEPs) arose 50 years ago with radio observations of type III bursts, produced by outward streaming electrons, and type II bursts from coronal and interplanetary shock waves. Since that time we have found that the former are related to “impulsive” SEP events from impulsive flares or jets. Here, resonant stochastic acceleration, related to magnetic reconnection involving open field lines, produces not only electrons but 1000-fold enhancements of 3He/4He and of (Z>50)/O. Alternatively, in “gradual” SEP events, shock waves, driven out from the Sun by coronal mass ejections (CMEs), more democratically sample ion abundances that are even used to measure the coronal abundances of the elements. Gradual events produce by far the highest SEP intensities near Earth. Sometimes residual impulsive suprathermal ions contribute to the seed population for shock acceleration, complicating the abundance picture, but this process has now been modeled theoretically. Initially, impulsive events define a point source on the Sun, selectively filling few magnetic flux tubes, while gradual events show extensive acceleration that can fill half of the inner heliosphere, beginning when the shock reaches ~2 solar radii. Shock acceleration occurs as ions are scattered back and forth across the shock by resonant Alfvén waves amplified by the accelerated protons themselves as they stream away. These waves also can produce a streaming-limited maximum SEP intensity and plateau region upstream of the shock. Behind the shock lies the large expanse of the “reservoir”, a spatially extensive trapped volume of uniform SEP intensities with invariant energy-spectral shapes where overall intensities decrease with time as the enclosing “magnetic bottle” expands adiabatically. These reservoirs now explain the slow intensity decrease that defines gradual events and was once erroneously attributed solely to slow outward diffusion of the particles. At times the reservoir from one event can contribute its abundances and even its spectra as a seed population for acceleration by a second CME-driven shock wave. Confinement of particles to magnetic flux tubes that thread their source early in events is balanced at late times by slow velocity-dependent migration through a tangled network produced by field-line random walk that is probed by SEPs from both impulsive and gradual events and even by anomalous cosmic rays from the outer heliosphere. As a practical consequence, high-energy protons from gradual SEP events can be a significant radiation hazard to astronauts and equipment in space and to the passengers of high-altitude aircraft flying polar routes.  相似文献   

11.
From magnetic fields and coronal heating observed in flares, active regions, quiet regions, and coronal holes, we propose that exploding sheared core magnetic fields are the drivers of most of the dynamics and heating of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to a multitude of fine-scale explosive events in the magnetic network, driving microflares, spicules, global coronal heating, and, consequently, the solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Several examples of the radio emission of eruptive solar flares with high-frequency slowly drifting structures and type II bursts are presented. Relationships of these radio bursts with eruptive phenomena such as soft X-ray plasmoid ejection and shock formation are shown. Possible underlying physical processes are discussed in the framework of the plasmoid ejection model of eruptive solar flares. On the other hand, it is shown that these radio bursts can be considered as radio signatures of eruptive solar flares and thus used for the prediction of heliospheric effects. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   

14.
The solar/interplanetary events in early August 1972 are summarized in Section 1 (Introduction), Section 2 (August 1972 Events in the Solar Cycle 20), Section 3 (Evolution of Solar Active Region: McMath region No. 11976 and its flare-activity), Section 4 (Radio, X-ray, and Proton Characteristics of Four Major Solar Flares: F-1 at 0316 UT on 2 August, F-2 at 1958 UT on 2 August, F-3 at 0626 UT on 4 August, and F-4 at 1522 UT on 7 August), Section 5 (Interplanetary Shock Waves: observations of the shock waves generated from the four major solar flares at several points in interplanetary space, the Earth, Pioneer-9, Pioneer-10, etc.; interplanetary scintillations; shock trajectories in the heliosphere), Section 6 (Variations of Solar and Galactic Cosmic Rays: four solar proton events observed in the vicinity of the earth and at the Pioneer-9 location in the course of interplanetary disturbances; Forbush decreases of cosmic ray intensity; the spikeshaped variation in solar and galactic cosmic rays on 5 August), and Section 7 (Conclusions).  相似文献   

15.
In this paper a review is presented of the present status of our knowledge of solar flare phenomena with special emphasis on the production of suprathermal particles and their solar effects. Of these energetic particles electrons play an important role since they produce the X-ray and radiobursts observed during many flares. Also, during their slowing down to thermal energies they contribute to the heating of localized regions in the solar atmosphere, through energy exchange with the ambient electrons. Observable radiations of energetic protons, and other nuclei, are produced through nuclear interactions leading to the emissions of gamma-ray lines. Detectable fluxes of these gamma-ray lines are produced only in the most powerful flares. Also the nuclei that enter into deeper layers of the solar atmosphere transfer most of their kinetic energy to the ambient plasma.  相似文献   

16.
Results of laboratory experiments on the study of collisionless shock wave structure in plasmas with and without a magnetic field are summarized, and comparisons with theoretical inferences are made. Consideration is given to the clarification of the collisionless dissipation mechanism and to the causes that bring it about. Transition conditions from one type of shock wave to another are analyzed. The relationship between laboratory experiments and the Earth bow shock measurements is also examined.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

17.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

18.
The magnetic energy released inside an active region is closely related to its formation and evolution. Following the evolution of a collection of flux tubes inside the convection zone and above the photosphere we can show that many nonlinear structures (current sheets, shock waves, double layers etc.) are formed. We propose in this review that coronal heating, flares and particle acceleration are due to the interaction of the plasma with these nonlinear structures. Approaching active regions as a driven complex dynamical system we can show that several coherent ensembles of the nonlinear structures will appear spontaneously. The statistical analysis of these structures is a major problem in solar physics. We can also show that many observed large scale structures are the result of the convolution of non-observable fragmentation in the energy release process.  相似文献   

19.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   

20.
It is shown that solar flares and magnetospheric substorms must primarily be caused by a dynamo process, rather than magnetic reconnection – a spontaneous, explosive annihilation of magnetic energy stored prior to the onset. Magnetic energy in the vicinity of solar flares and in the magnetotail shows often an increase at their onset, not a decrease. It is unfortunate that many observed features of solar flares and substorms have tacitly been ascribed to unproven (3-D) characteristics of the neutral line for a long time. In the future, it is necessary to study carefully their driving process and examine how the driven magnetic field system evolves, leading to solar flares and substorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号