首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cosmic Radiation Effects and Activation Monitor has flown on six Shuttle flights between September 1991 and February 1995 covering the full range of inclinations as well as altitudes between 220 and 570 km, while a version has flown at supersonic altitudes on Concorde between 1988 and 1992 and at subsonic altitudes on a SAS Boeing 767 between May and August 1993. The Shuttle flights have included passive packages in addition to the active cosmic ray monitor which comprises an array of pin diodes. These are positioned at a number of locations to investigate the influence of shielding and local materials. Use of both metal activation foils and scintillator crystals enables neutron fluences to be inferred from the induced radioactivity which is observed on return to Earth. Supporting radiation transport calculations are performed to predict secondary neutron spectra and the energy deposition due to nuclear reactions in silicon pin diodes and the induced radioactivity in the various scintillator crystals. The wide variety of orbital and atmospheric locations enables investigation of the influence of shielding on cosmic ray, trapped proton and solar flare proton spectra.  相似文献   

2.
The Shuttle Activation Monitor (SAM) experiment was flown on the Space Shuttle Columbia (STS-28) from 8-13 August, 1989 in a 57 degrees, 300 km orbit. One objective of the SAM experiment was to determine the relative effect of different amounts of shielding on the gamma-ray backgrounds measured with similarly configured sodium iodide (NaI) and bismuth germante (BGO) detectors. To achieve this objective twenty-four hours of data were taken with each detector in the middeck of the Shuttle on the ceiling of the airlock (a high-shielding location) as well as on the sleep station wall (a low-shielding location). For the cosmic-ray induced background the results indicate an increased overall count rate in the 0.2 to 10 MeV energy range at the more highly shielded location, while in regions of trapped radiation the low shielding configuration gives higher rates at the low energy end of the spectrum.  相似文献   

3.
The Emulsion Cloud Chamber (ECC) has played important role for the cosmic-ray research. The Micro Segment Chamber (MSC) is a new generation detector evolved from the ECC, which has maximized and extended advantages of ECCs as well as overcome difficulties in the analysis of the events that occur inside the detector. The essential parts of MSC and its application to a balloon experiment for cosmic-ray electron observations are described.  相似文献   

4.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

5.
Crews of future high-altitude commercial aircraft may be significantly exposed to atmospheric cosmic radiation from galactic cosmic rays (GCR). To help determine such exposures, the Atmospheric Ionizing Radiation Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on a NASA ER-2 high-altitude aircraft. The primary instrument was a sensitive extended-energy multisphere neutron spectrometer, which was also used to make measurements on the ground. Its detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using the radiation transport code MCNPX. We have now recalculated the detector responses including the effects of the airplane structure. We are also using new FLUKA calculations of GCR-induced hadron spectra in the atmosphere to correct for spectrometer counts produced by charged hadrons. Neutron spectra are unfolded from the corrected measured count rates using the MAXED code. Results for the measured cosmic-ray neutron spectrum (thermal to >10 GeV), total neutron fluence rate, and neutron dose equivalent and effective dose rates, and their dependence on altitude and geomagnetic cutoff generally agree well with results from recent calculations of GCR-induced neutron spectra.  相似文献   

6.
We describe the differential energy spectrum of trapped particles measured by a solid-state charged particle telescope in the mid-deck of the Space Shuttle during the period of solar maximum. The telescope was flown in two high altitude flights at 28.5° and 57° inclination. Assuming, as is normally done, that the variations of Shuttle orientation during the missions lead to average isotropic incident spectra, the observed spectrum disagrees significantly from AP8 model calculations. This indicates the need to take into consideration the variations of solid-angle direction relative to the magnetic field. The measurements show that there is a very significant flux of secondary light ions. The energy spectra of these ions does not agree with the production spectrum from radiation transport calculations based on omni-directional AP8 Max model as an input energy spectrum.

We also describe measurements of linear energy transfer spectra using a tissue equivalent proportional counter (TEPC) flown both in the mid-deck and the payload bay of the Space Shuttle. Comparisons are made between linear energy transfer spectral measurements AP8 model-based radiation transport predictions, and thermoluminescent dosimeter (TLD) measurements. The absorbed dose-rate measurements using TLD's are roughly 25% lower than the TEPC-measured dose rate measurements.  相似文献   


7.
Active instruments consisting of a tissue equivalent proportional counter (TEPC) and a proton and heavy ion detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of its features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestrial magnetic field the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at L approximately = 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect.  相似文献   

8.
Optical measurements made from the Space Shuttle include several sources of emission, each modified according to viewing configuration, Shuttle altitude, solar activity, local time, and latitude. These sources include the atmospheric emissions and emissions of non-terrestrial origin (such as stellar, interstellar, and interplanetary), together with any contamination emission induced by the Shuttle itself. In order to make astronomical observations from the Shuttle, the observer needs good information on the intensities and spectral characteristics of these various sources. In this paper we present a model spectrum for one of these components, the natural airglow background. The spectrum is modeled over a wavelength range extending from the extreme ultraviolet to the near infrared. This model is based on our present knowledge of the upper atmosphere. The effect of different viewing configurations is illustrated, together with day to night variations. The results synthesized here assume an ideal vehicle in the sense that no contaminant emissions are induced by the Shuttle and payload. These spectra therefore represent a baseline which can be used to locate unanticipated or non-ambient features.  相似文献   

9.
The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.  相似文献   

10.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   

11.
The Cosmic Radiation Environment & Activation Monitor (CREAM) was carried in high inclination (57.1 degrees) orbits on Shuttle missions STS-48 in September 1991 (altitude 570 km) and STS-53 (altitude 325 to 385 km) in December 1992. On both occasions the instrument observed an excess of counts due to protons of greater than 30 MeV in energy in the region off of South Africa where field lines of L=2.5 intersect low earth orbit. Meanwhile the Cosmic Radiation Environment and Dosimetry Experiment (CREDO) carried to 840 km, 98.7 degrees orbit on UOSAT-3 has continued to sample the high field portions of the L-shells around L = 2.5 from April 1990 until the present time. When careful subtraction of cosmic-ray contributions is made it can be seen that the March 91 enhancement persisted for approximately 8 months and explains the STS-48 observation. There would appear to have been a further increase produced by the 31 October 1992 flare event and seen by STS-53.  相似文献   

12.
Studies to characterize optical and biological properties of land cover as observed from space are planned using a six channel, imaging spectroradiometer employing newly developed multispectral linear array (MLA) detector technology. These studies are to take place by mounting the radiometer on the Shuttle and observing areas with dynamic and diverse types of land cover condition. The radiometer will have 15 meter spatial resolution for four, 20 nanometer bands in the visible and near infrared and 30 meter resolution for similarily narrow bands in the shortwave infrared bands. The instrument will scan ± 45 degrees along the Shuttle orbital path. The principle objective of this experiment is to obtain observations that augment knowledge of the distribution of basic land cover types in regions that are known to be key to questions of biogeochemical cycles, energy balance and climatic change. Another key objective is to quantify the bidirectional reflectance of key land cover conditions in major portions of the visible, near infrared and shortwave infrared as they are observed from space. The initial execution of this experiment is presently scheduled for late 1987.  相似文献   

13.
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.  相似文献   

14.
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected.  相似文献   

15.
We analyze the cosmic-ray anisotropy observed by a prototype network of muon detectors during geomagnetic storms associated with coronal mass ejections (CMEs). The network currently consists of multidirectional surface muon detectors at Nagoya (Japan) and Hobart (Australia), together with a prototype detector at São Martinho (Brazil) which has been in operation since March, 2001. In this report, we analyze the anisotropy recorded in both the muon detector and neutron monitor (the Spaceship Earth) networks and find significant enhancements of cosmic-ray anisotropy during geomagnetic storms. Following the analysis by Bieber and Evenson [Bieber, J.W., Evenson, P. CME geometry in relation to cosmic ray anisotropy. Geophys. Res. Lett. 25 (1998) 2955–2958] for the neutron monitor data at 10 GeV, we also derive cosmic-ray density gradients from muon data at higher-energy (50 GeV), possibly reflecting the larger-scale geometry of CMEs causing geomagnetic storms. We particularly find in some events the anisotropy enhancement clearly starting prior to the storm onset in both the muon and neutron data. This is the first result of the CME-geometry derived from simultaneous observations of the anisotropy with networks of multidirectional muon detectors and neutron monitors.  相似文献   

16.
PHITS (Particle and Heavy-Ion Transport code System) is a general-purpose three-dimensional Monte Carlo code, developed and maintained by RIST, JAEA and KEK in Japan together with Sihver et al. at Chalmers in Sweden. PHITS can deal with the transports of all varieties of hadrons and heavy ions with energies up to around 100 GeV/nucleon, and in this paper the current status of PHITS is presented. We introduce a relativistically covariant version of JQMD, called R-JQMD, that features an improved ground state initialization algorithm, and we will present the introduction of electron and photon transport in PHITS using EGS5, which have increased the energy region for the photon and energy transport from up to around 3 GeV to up to several hundred GeV depending on the atomic number of the target. We show how the accuracy in dose and fluence calculations can be improved by using tabulated cross sections. Benchmarking of shielding and irradiation effects of high energy protons in different materials relevant for shielding of accelerator facilities is also presented. In particular, we show that PHITS can be used for estimating the dose received by aircrews and personnel in space. In recent years, many countries have issued regulations or recommendations to set annual dose limitations for aircrews. Since estimation of cosmic-ray spectra in the atmosphere is an essential issue for the evaluation of aviation doses, we have calculated these spectra using PHITS. The accuracy of the atmospheric propagation simulation of cosmic-ray performed by PHITS has been well verified by experimental cosmic-ray spectra taken under various conditions. Based on a comprehensive analysis of the simulation results, an analytical model called “PARMA” has been proposed for instantaneously estimating the atmospheric cosmic-ray spectra below the altitude of 20 km. We have also performed preliminary simulations of long-term dose distribution measurements at the ISS performed with the joint ESA-FSA experiment MATROSHKA-R (MTR-R) led by the Russian Federation Institute of Biomedical Problems (IMBP) and the ESA supported experiment MATROSHKA (MTR), led by the German Aerospace Center (DLR). For the purpose of examining the applicability of PHITS to the shielding design in space, the absorbed doses in a tissue equivalent water phantom inside an imaginary space vessel has been estimated for different shielding materials of different thicknesses. The results confirm previous results which indicate that PHITS is a suitable tool when performing shielding design studies of spacecrafts.  相似文献   

17.
The full potential for making remote observations from space free from atmospheric attenuations and distortions may not be realized due to the residual environment surrounding orbital experiments: particulates could overwhelm or severely complicate remote astronomical or atmospheric sounding observations. Small particles are lifted into space by the observatory and its carrier and take considerable time to evolve from surfaces. Single near-field particles have been observed which produce irradiance levels larger than the brightest stars and brighter than the emission from the entire earth limb airglow layer.The existing data bases are reviewed including: 1) the low light level camera videotape data of STS-3 in which large persistent particles were observed; 2) the data from the stereo cameras which were part of the Induced Environmental Contamination Monitor pallet assembled by NASA Marshall - which is being analyzed to obtain particle number densities, trajectories, and decay times; and 3) data from the Particle Analysis Camera for Shuttle which was part of the HITCHHIKER pallet on a January 1986 Mission is current being analyzed to obtain decay rates and correlations with orbital activities. The implications for several other data bases such as the Infrared Telescope is also described.The analysis of these spectrally broad band observations is further complicated by the nature of the particle's scattering of light. Depending on wavelength and particle size, the scattering of solar radiation or earth radiation, or particle self emission will dominate the optical signature. The scattering and emission from particulates will likely be highly structured as a function of wavelength. We present Mie scattering calculations for particle size distributions observed on-orbit. Finally, we assess the consequences of the observations and calculations on future space-based observations.  相似文献   

18.
The second flight of the International Microgravity Laboratory (IML-2) on Space Shuttle flight STS-65 provided a unique opportunity for the intercomparison of a wide variety of radiation measurement techniques. Although this was not a coordinated or planned campaign, by sheer chance, a number of space radiation experiments from several countries were flown on this mission. There were active radiation measuring instruments from Japan and US, and passive detectors from US, Russia, Japan, and Germany. These detectors were distributed throughout the Space Shuttle volume: payload bay, middeck, flight deck, and Spacelab. STS-65 was launched on July 8, 1994, in a 28.45 degrees x 306 km orbit for a duration of 14 d 17 hr and 55 min. The crew doses varied from 0.935 mGy to 1.235 mGy. A factor of two variation was observed between various passive detectors mounted inside the habitable Shuttle volume. There is reasonable agreement between the galactic cosmic ray dose, dose equivalent and LET spectra measured by the tissue equivalent proportional counter flown in the payload bay with model calculations. There are significant differences in the measurements of LET spectra measured by different groups. The neutron spectrum in the 1-20 MeV region was measured. Using fluence-dose conversion factors, the neutron dose and dose equivalent rates were 11 +/- 2.7 microGy/day and 95 +/- 23.5 microSv/day respectively. The average east-west asymmetry of trapped proton (>3OMeV) and (>60 MeV) dose rate was 3.3 and 1.9 respectively.  相似文献   

19.
Predictions of shielding requirements, levels of induced radioactivity and of radiation damage around high-energy accelerators require accurate simulation of the physics of proton-induced cascades from energies above the TeV to energies below the eV region. Experimental studies of cascades using activation detector, dosimeter and counter techniques provide valuable data for validating simulation procedures and for extrapolating the required accelerator design parameters directly. Such studies include the yields of low-energy secondary neutrons in proton-nucleus interactions, the spatial distribution of hadrons, low-energy neutrons and energy deposition close to the core of proton cascades and measurements at large lateral depths in shields. This paper describes some of these measurement and compares them with the predictions made by Monte-Carlo simulations.  相似文献   

20.
An X2/2B level solar flare occurred on 12 August, 1989, during the last day of the flight of the Space Shuttle Columbia (STS-28). Detectors on the GOES 7 satellite observed increased X-ray fluxes at approximately 1400 GMT and a solar particle event (SPE) at approximately 1600 GMT. Measurements with the bismuth germanate (BGO) detector of the Shuttle Activation Monitor (SAM) experiment on STS-28 showed factors of two to three increases in count rates at high latitudes comparable to those seen during South Atlantic Anomaly (SAA) passages beginning at about 1100 GMT. That increased activity was observed at both north and south high latitudes in the 57 degrees, 300 kilometer orbit and continued until the detector was turned off at 1800 GMT. Measurements made earlier in the flight over the same geographic coordinates did not produce the same levels of activity. This increase in activity may not be entirely accounted for by observed geomagnetic phenomena which were not related to the solar flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号