首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
True proportional navigation with maneuvering target   总被引:2,自引:0,他引:2  
We analytically obtain the capture regions for the true proportional navigation (TPN) missile guidance law against an intelligently maneuvering target. Two versions of TPN are considered. The first is the original TPN which assumes the commanded lateral acceleration to be directly proportional to the line-of-sight (LOS) rate only, the proportionality factor being an arbitrary constant or dependent only on the initial closing velocity. The other, known as RTPN (realistic TPN), assumes the commanded lateral acceleration to be directly proportional to the LOS rate and also the current closing velocity. The target is assumed to maneuver in such a way as to increase the LOS rate and thus directly oppose the proportional navigation (PN) philosophy of annulling the LOS rate. A necessary and sufficient condition for capture is derived for the original TPN, and using it, the exact capture region is obtained. A sufficient condition for capture is derived for RTPN and is used to obtain its capture region partially. Some necessary conditions for capture are also derived for RTPN and are used to obtain an upper bound on its complete capture region. Using these conditions some important results on the existence of capture regions and a comparative study of capturability of TPN laws are also presented  相似文献   

2.
The closed-form solution of the equations of motion of an ideal missile pursuing a nonmaneuvering target according to the pure proportional navigation law is obtained as a function of the polar coordinates for all real navigation constants N⩾2. The solution is given in the form of a uniformly convergent infinite product which reduces to a product of a finite number of factors if the navigation constant is a rational number. The solution is discussed, and necessary and sufficient conditions are stated for vanishing, bounded, and unbounded missile acceleration in the final phase of pursuit  相似文献   

3.
基于纯比例导引的拦截碰撞角约束制导策略   总被引:1,自引:0,他引:1  
黎克波  廖选平  梁彦刚  李超勇  陈磊 《航空学报》2020,41(z2):724277-724277
拦截碰撞角约束制导是当前导弹制导研究的关键问题之一。首先基于理想比例导引(IPN)律拦截非机动目标的解析解,推导了纯比例导引律(PPN)拦截固定目标的解析解,得到了弹目相对距离、制导指令加速度和导弹前置角的显示表达式,并进一步得到了拦截碰撞角与弹目相对运动状态和比例导引系数之间的解析表达式。其次,基于该解析表达式,提出了基于PPN的拦截碰撞角约束制导策略(PPNIACG),并探讨了在铅垂面内进行落角约束打击和水平面内进行拦截碰撞角约束打击的2种实现方式。最后,以弹道成型制导律(TSG)和最优碰撞角约束制导律(OIACG)为参考,通过数值仿真算例,对PPNIAC的拦截性能进行了对比分析,验证了所提出制导策略的有效性和正确性。  相似文献   

4.
Most model-based tracking algorithms represent the temporal dynamics of a maneuver acceleration with a Markov process. The sample paths so generated may not be plausible. A renewal process model is shown to be more realistic, but a tracker based upon it is seen to be more complicated to implement. The response of the renewal-model tracker is compared with a simpler estimator based upon a Markov model both for the case in which the tracker utilizes an imager, and the case where it does not. It is shown in the latter case that performance improvement is not commensurate with algorithmic complexity. For an image-enhanced tracker, a sophisticated model of target dynamics promises significant performance improvement  相似文献   

5.
A methodology for the tracking of maneuvering targets is presented. A quickest-detection scheme based on the innovation sequence is developed for a prompt detection of target maneuvers. The optimal length of a sliding window that minimizes the maneuver detection delay for a given false-alarm rate is determined. After maneuver detection, the system model is modified by adding a maneuver term. A recursive algorithm is proposed to estimate the maneuver magnitude. With this estimate, a modified Kalman filter is used for tracking. Simulation results demonstrate the superior performance of the algorithm, especially during target maneuvers  相似文献   

6.
Ideal proportional navigation for exoatmospheric interception   总被引:2,自引:2,他引:0  
Ideal proportional navigation (IPN) is a natural choice for exoatmospheric interception for its mighty capture capability and ease of implementation. The closed-form solution of two- dimensional ideal proportional navigation was conducted in previous public literature, whereas the practical interception happens in the three-dimensional space. A novel set of relative dynamic equations is adopted in this paper, which is with the advantage of decoupling relative motion in the instantaneous rotation plane of the line of sight from the rotation of this plane. The dimension-reduced IPN is constructed in this instantaneous plane, which functions as a three-dimensional guidance law. The trajectory features of dimension-reduced IPN are explored, and the capture regions of dimension-reduced IPN with limited acceleration against nonmaneuvering and maneuvering targets are analyzed by using phase plane method. It is proved that the capture capability of IPN is much stronger than true proportional navigation (TPN), no matter the target maneuvers or not. Finally, simulation results indicate that IPN is more effective than TPN in exoatmospheric interception scenarios.  相似文献   

7.
An accurate solution is presented of the nonlinear differential equations describing motion under proportional navigation when the target is laterally maneuvering. A quasilinearization (QL) approach is used, followed by a perturbation technique to obtain closed-form solutions for trajectory parameters. An explicit expression for the pursuer lateral acceleration is derived and shown to contain contributions due to initial heading error and target maneuver, with a coupling between the two effects. The solution is shown to be a substantial and consistent generalization or an earlier accurate solution for nonmaneuvering targets and also of classical linear solutions for maneuvering targets. The generalized QL solution presented provides very accurate estimates of pursuer lateral acceleration over a much broader range of engagement geometries and target maneuvers than presently available closed-form solutions  相似文献   

8.
A jerk model for tracking highly maneuvering targets   总被引:5,自引:0,他引:5  
A model of target motion in three-dimensional space that includes position derivatives up to the third order is developed. Compared with available models, which include terms at the most up to the second derivative, the model introduced in this work, called the jerk model, can more accurately describe agile target maneuvers which are likely to contain significant higher order derivatives. A compatible 4-state Kalman filter to perform tracking in conjunction with the jerk model is also presented, and an initialization procedure for the filter is provided. The improved performance of the jerk model over a lower order model is illustrated through numerical simulation.  相似文献   

9.
A non-Bayesian segmenting tracker for highly maneuvering targets   总被引:1,自引:0,他引:1  
The segmenting track identifier (STI) is introduced as a new methodology for tracking highly maneuvering targets. This nonBayesian approach dynamically partitions a target track into a sequence of track segments, making hard estimates of when the target's maneuvering mode transitions occur, and then estimates the parameters of the target model for each segment. STI is compared with two variable structures interacting multiple model (VS-IMM) algorithms through simulations, where it is shown to have a three fold performance advantage in median absolute turn rate estimation errors, as well as better position estimation for very highly maneuvering targets. STI is also shown to outperform a Rauch-Tung-Striebel (RTS) fixed-interval smoother when estimates are retrospectively derived, and STI accurately characterize the temporal pattern of maneuvers.  相似文献   

10.
To intercept maneuvering targets at desired impact angles, a three-dimensional terminal guidance problem is investigated in this study. Because of a short terminal guidance time, a finitetime impact angle control guidance law is developed using the fast nonsingular terminal sliding mode control theory. However, the guidance law requires the upper bound of lumped uncertainty including target acceleration, which may not be accurately obtained. Therefore, by adopting a novel reaching law, an adaptive sliding mode guidance law is provided to release the drawback. At the same time, this method can accelerate the convergence rate and weaken the chattering phenomenon to a certain extent. In addition, another novel adaptive guidance law is also derived; this ensures systems asymptotic and finite-time stability without the knowledge of perturbations bounds.Numerical simulations have demonstrated that all the three guidance laws have effective performances and outperform the traditional terminal guidance laws.  相似文献   

11.
Performance analysis of PNG laws for randomly maneuvering targets   总被引:4,自引:0,他引:4  
The performance of the conventional proportional navigation guidance (PNG) law for a randomly maneuvering target is considered. By means of the Lyapunov method, it is proved that an ideal missile guided by the conventional PNG law can always intercept a target which maneuvers with time-varying normal acceleration provided that the navigation constant is sufficiently large. The authors also propose a modified PNG (MPNG) law which seems to improve the performance of the conventional PNG law at the final phase of pursuit. Simulation results demonstrate that the MPNG law demands less missile acceleration at the final phase of pursuit than the conventional PNG law  相似文献   

12.
Linear Kalman filters, using fewer states than required to completely specify target maneuvers, are commonly used to track maneuvering targets. Such reduced state Kalman filters have also been used as component filters of interacting multiple model (IMM) estimators. These reduced state Kalman filters rely on white plant noise to compensate for not knowing the maneuver - they are not necessarily optimal reduced state estimators nor are they necessarily consistent. To be consistent, the state estimation and innovation covariances must include the actual errors during a maneuver. Blair and Bar-Shalom have shown an example where a linear Kalman filter used as an inconsistent reduced state estimator paradoxically yields worse errors with multisensor tracking than with single sensor tracking. We provide examples showing multiple facets of Kalman filter and IMM inconsistency when tracking maneuvering targets with single and multiple sensors. An optimal reduced state estimator derived in previous work resolves the consistency issues of linear Kalman filters and IMM estimators.  相似文献   

13.
虞翔  张建秋 《航空学报》2015,36(10):3430-3438
在实际的跟踪情况中,由于环境条件、目标反射截面等因素的变化,回波信号的功率会随时间变化,即不满足通常阵列信号处理中对高斯信号作平稳性的假设。针对复杂运动条件下高斯非平稳目标的跟踪问题,提出了一种新的机动目标波达角(DOA)模型。该模型全面地刻画了高斯非平稳机动目标的动态,并将目标的DOA和信号功率作为状态变量进行了联合考虑,同时运用虚拟阵列的表示方法构建了相应的观测方程。对于建立的新模型,最后采用无迹卡尔曼滤波(UKF)的框架完成了整个跟踪算法。分析和仿真结果表明,当高斯非平稳机动目标之间存在长时间相互接近的情况时,新方法仍然可以获得较好的跟踪性能。  相似文献   

14.
Proportional navigation (PN) equations are not solvable in closed form. Linearized solutions have been widely used for PN system analysis and design, but these are based on overly restrictive assumptions regarding the initial geometry, and are valid only for near-tail-chase pursuits. A generalization of the linearized approach is presented which yields more-accurate estimates of pursuer lateral acceleration than the classical linear solutions as verified by comparison with `exact' numerical solutions. Further, the solution is applicable over a much wider range of engagement geometries. The treatment is based on a closed-form quasilinearized solution of the PN equations followed by the small-angle approximation only to line-of-sight (LOS) angle rate  相似文献   

15.
有向拓扑条件下针对机动目标的分布式协同制导律设计   总被引:1,自引:1,他引:0  
董晓飞  任章  池庆玺  李清东 《航空学报》2020,41(z1):723762-723762
研究了在有向拓扑条件下针对机动目标的分布式协同制导律的设计问题。首先,根据飞行器与目标之间追击过程的几何关系建立制导过程系统模型,针对该模型的非线性问题采用动态反馈线性化方法进行处理。将目标未知机动视为干扰,通过扩张状态观测器进行观测,同时将该估计值用于制导律的设计中,通过直接补偿的方式剔除目标机动对飞行器剩余飞行时间的影响。然后,将所设计的制导律代入到制导模型中,利用一致性分析方法将多飞行器协同制导问题转化为一致性问题,利用极点分析的方法对非一致性子空间的收敛性进行分析,得到协同制导律收敛的充要条件。最后,通过仿真分析的方式对所设计的协同制导律以及制导律的参数选取方法进行分析。  相似文献   

16.
The proportional navigation dilemma-pure or true?   总被引:1,自引:0,他引:1  
Two generic classes of proportional navigation (PN) laws are compared in detail. One class consists of pursuer-velocity-referenced systems, which include pure proportional navigation (PPN) and its variants; the second category consists of line-of-sight- (LOS-) referenced systems such as true proportional navigation (TPN), generalized true proportional navigation (GTPN), and generalized guidance laws. The existing closed-form solutions are discussed in detail, and the classical linear and quasilinear analytical solutions are summarized. A critical comparison is then made with regard to the definition, implementation, and analytical aspects of the guidance laws, including the method, the nature of solution, and an appraisal of the behavior of the pursuer motion resulting from the laws. It is established that, in spite of some restricted advantages in the solvability of the equations of motion, the LOS-referenced PN schemes suffer from serious limitations in terms of implementation and trajectory behavior. Among the major drawbacks are forward velocity variation requirement, relatively large control effort requirement, restrictions on initial engagement conditions to ensure intercept, lack of robustness, and possibility of unbounded acceleration. It is concluded that PPN is a better guidance law in a practical sense than TPN and its generalizations  相似文献   

17.
A simple framework to define generalized true proportional navigation (GTPN) guidance laws is presented. It is shown that this framework subsumes many of the generalizations presented in the earlier literature. The capture regions of a number of GTPN guidance laws are obtained through a rigorous qualitative analysis. The method of analysis is simpler and lends itself directly to an easy geometrical interpretation. A considerable amount of misinterpretation in the previous results, arising out of certain basic misconceptions, are corrected here. It is shown that a logical application of the guidance philosophy, through a minor modification of GTPN to take into account the direction of rotation of the line-of-sight (LOS), contributes substantially to the expansion of the capture region in the relative velocity space. In particular, it is shown that the capture region also extends to the negative closing velocity region, thus making the modified GTPN almost comparable, so far as the domain of capturability of guidance laws is concerned, to the pure proportional navigation (PPN) guidance law. A number of new results on the exact bounds on the capture region are derived and illustrated through examples  相似文献   

18.
Capturability of the pure proportional navigation (PPN) guidance law against a target executing bounded piecewise continuous time-varying manoeuvres is investigated. A qualitative analysis is carried out to obtain a set of sufficient conditions for capture defined on the engagement parameters and initial conditions. These conditions are significantly less restrictive than the ones obtained previously by others using the Lyapunov method. It is shown that the actual capture region for time-varying target manoeuvres, obtained by using the conditions derived, is much larger than that obtained from the Lyapunov technique. We also show that though a bounded tine varying target manoeuvre does change the constant target manoeuvre capture region to some extent, it does not reduce it drastically. Further, we show that the worst case capture region is obtained when the target executes a constant manoeuvre equal to the bound on the manoeuvre level. Some bounds on the missile lateral acceleration are also obtained for certain regions in the engagement plane. These results are generalizations and extensions of existing results on the capturability of the PPN guidance law against targets executing constant or time-varying target manoeuvres  相似文献   

19.
Stability characteristics of proportional navigation (PN) guidance are analyzed by using the short-time stability criterion which is extended here to accommodate time-varying state weights and time-varying bounds of the state norm. As short-time stability is defined over a specified time interval, its application to the stability analysis of a homing guidance loop that operates up to a finite time gives more accurate results than previous studies. Furthermore, within the framework of short-time stability, zero effort miss and acceleration command, which are the most important variables determining guidance performance, can be directly related with guidance loop stability. An application to a PN guidance loop with a 1st-order missile/autopilot time lag shows that the stability condition based on short-time stability is less conservative than the previous results based on hyperstability and Popov stability  相似文献   

20.
We present reduced-complexity nonlinear filtering algorithms for image-based tracking of maneuvering targets. In image-based target tracking, the mode of the target is observed as a Markov modulated Poisson process (MMPP) and the aim is to compute optimal estimates of the target's state. We present a reduced complexity algorithm in two steps. First, a gauge transformation is used to reexpress the filtering equations in a form that is computationally more efficient for time discretization than naive discretization of the filtering equations. Second, a spatial aggregation algorithm with guaranteed performance bounds is presented for the time-discretized filters. A numerical example illustrating the performance of the resulting reduced-complexity filtering algorithms for a switching turn-rate model is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号