首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


2.
As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. Here we discuss the concept of closure as it pertains to CELSS and describe engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5% of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in this facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.  相似文献   

3.
Systematic approach to life support system analyses and integration.   总被引:1,自引:0,他引:1  
This paper is devoted to the consideration of possible viewpoint on CELSS development and design. If the aim to create practically applicable CELSS is accepted then the task to optimize the process of CELSS research and development in terms of minimum cost, hours, maximum applicability, scientific contribution, etc. becomes actual. Requirements of applicability and scientific significance are synergetic since understanding of general properties of CELSS gives an ability to create CELSS for different applications. To accomplish the task three main groups of parameters have to be optimized: i) configuration and operating parameters of developing CELSS itself; ii) organizational management of research and development of CELSS; iii) features of an area where CELSS is planned to be used (space missions, terrestrial applications, or biosphere investigation) and where requirements to CELSS characteristic come from. Given paper is a brief review presented some attempts to arrange mentioned above into some set of formalized and interacting criteria, and some progression of research stages derived from these criteria.  相似文献   

4.
A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.  相似文献   

5.
6.
The Breadboard Project: a functioning CELSS plant growth system.   总被引:1,自引:0,他引:1  
The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active.  相似文献   

7.
Many research activities regarding Controlled Ecological Life Support System (CELSS) have been conducted and continued all over the world since the 1960's and the concept of CELSS is now changing from Science Fiction to Scientific Reality. Development of CELSS technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned mars flight programs. CELSS functions can be divided into two categories, Environment Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Based on these considerations, Japanese research activities have been conducted and will be continued under the tentative guideline of CELSS research activities as shown in documents /1/, /2/. The status of the over all activities are discussed in this paper.  相似文献   

8.
The establishment of an autonomous European manned space capability is an objective set up by the ESA Council Meeting at the ministerial level, in 1985/1987. ESA's Long-Term Programme Office (LTPO), charged of the preparation of the programme for a European Manned Space Infrastructure (EMSI), started during 1988 to build up an intellectual framework in the domain of long-duration manned space missions. EMSI scope was eventually extended to embrace Moon/Mars missions and bases. Several exploratory studies on problems related to human factors in long-duration space missions were initiated by LTPO. The work of an ad-hoc group of experts (SIMIS Group) has been focused during 1989/1990 on the planning for simulation of such missions with a broad mandate, covering the physiological, psychological and operational aspects of long-duration exposure to microgravity and isolation/confinement. Preliminary results of SIMIS activities are reported. The HYDREMSI experiment, carried out in a terrestrial, analogous environment for 72 days during 1989, is described as an example of the envisaged simulations.  相似文献   

9.
Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O2 mg−1 h−1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.  相似文献   

10.
The European CELSS activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). Since then the European efforts have continued in two major directions: as a series of individual development tasks like the Environmental Life Support System and the Solar Plant Growth Facility, and in parallel hereto as overall coordination and planning activities for life support system long term needs definition and payload definition for COLUMBUS utilization. The early initiations for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still to early to state that a "CELSS-programme" as a "concerted" effort has been agreed upon in Europe. However, the general CELSS objectives have been accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades.  相似文献   

11.
12.
During the past 10 years, the main part of CELSS studies has concerned the exploration of limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Concepts of mineral nutrition were renewed. CELSS activities now induce a development in the techniques of image processing applied to plants in order to follow the growth, to detect stresses or diseases or to pilot harvesting robots. Notable efforts concern the development of sensors, the study of trace contaminants and the micro-organisms monitoring. In parallel, several instruments for plant culture in closed Systems were developed. The advantages of closure are emphasised in comparison with open flow systems. The concept of Artificial Ecosystems developed for space research is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not especially concerned with space research.  相似文献   

13.
Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year.  相似文献   

14.
The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.  相似文献   

15.
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended.  相似文献   

16.
CELSS technology, composed of various subsystems designed to stabilize the environment in closed space can be used to construct the Closed Ecology Experiment Facility. The Closed Ecology Experiment Facility has the character of an Environmental Time Machine. Many environmental researches of studies will, it is proposed, be conducted using this facility. The concept of Closed Ecology Experiment Facility is described, and several research items related to earth science potentially to be conducted using this facility are indicated. As an example of the application, an improved model of climate estimation is discussed.  相似文献   

17.
Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.  相似文献   

18.
Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.  相似文献   

19.
A simple Closed Aquatic Ecosystem (CAES) consisting of single-celled green algae (Chlorella pyrenoidosa, producer), a spiral snail (Bulinus australianus, consumer) and a data acquisition and control unit was flown on the Chinese Spacecraft SHENZHOU-II in January 2001 for 7 days. In order to study the effect of microgravity on the operation of CAES, a 1 g centrifuge reference group in space, a ground 1 g reference group and a ground 1 g centrifuge reference group (1.4 g group) were run concurrently. Real-time data about algae biomass (calculated from transmission light intensity), temperature, light and centrifugation of the CAES were logged at minute intervals. It was found that algae biomass of both the microgravity group and the ground 1 g-centrifuge reference group (1.4 g) fluctuated during the experiment, but the algae biomass of the 1 g centrifuge reference group in space and the ground 1 g reference group increased during the experiment. The results may be attributable to influences of microgravity and 1.4 g gravity on the algae and snails metabolisms. Microgravity is the main factor to affect the operation of CAES in space and the contribution of microgravity to the effect was also estimated. These data may be valuable for the establishment of a complex CELSS in the future.  相似文献   

20.
Silkworms culture as a source of protein for humans in space   总被引:1,自引:0,他引:1  
This paper focuses on the problem about a configuration with complete nutrition for humans in a Controlled Ecological Life Support System (CELSS) applied in the spacebases. The possibility of feeding silkworms to provide edible animal protein with high quality for taikonauts during long-term spaceflights and lunar-based missions was investigated from several aspects, including the nutrition structure of silkworms, feeding method, processing methods, feeding equipment, growing conditions and the influences on the space environmental condition changes caused by the silkworms. The originally inedible silk is also regarded as a protein source. A possible process of edible silk protein was brought forward in this paper. After being processed, the silk can be converted to edible protein for humans. The conclusion provides a promising approach to solving the protein supply problem for the taikonauts living in space during an extended exploration period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号