首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of some geomagnetic storms on the F2 layer peak parameters over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°) have been investigated. Our results showed that the highest intensity of the noon bite-out occurred during the March equinox and lowest during the June Solstice on quiet days. Quiet day NmF2 disturbances which appeared as a pre-storm enhancement, but not related to the magnetic storm event that followed were observed at this station. These enhancements were attributed to the modification of the equatorial electric field as a result of injection of the Auroral electric field to the low and equatorial ionosphere. For disturbed conditions, the morphology of the NmF2 on quiet days is altered. Daytime and nighttime NmF2 and hmF2 enhancements were recorded at this station. Decreases in NmF2 were also observed during the recovery periods, most of which appeared during the post-noon period, except the storm event of May 28–29. On the average, enhancements in NmF2 (i.e. Positive phases) are the prominent features of this station. Observations from this study also indicate that Dst, Ap and Kp which have been the most widely used indices in academic research in describing the behavior of geomagnetic storms, are not sufficient for storm time analysis in the equatorial and low latitude ionosphere.  相似文献   

2.
The magnetic storm of 9 March 2012 is a single step intense storm (Dst = −143 nT) whose main phase begins around 0100 UT and lasted for almost 11 h. The increases in NmF2 recorded 33% and 67% incidence respectively during the main and the recovery phase of the storm at the stations considered. The increase in hmF2 occurred concurrently with the increase in thickness parameter B0 between 0000 and 1100 UT, and a simultaneous decrease in the shape parameter B1 for the entire mid-latitude stations. Generally, B1 responded to the storm with a decrease away from the quiet day average, and decreased simultaneously with the increase in NmF2. B0 displays higher variability magnitude during daytime than the nighttime period. The occasional differences in the response of the ionospheric parameters to the storm event are attributed to longitudinal differences. Variation in hmF2 and NmF2 is projected to change in B1, but the rationale behind this effect on B1 is still not known and therefore left open. The two IRI options over-estimate the observed values with that of URSI higher than CCIR. The over-estimation was higher during the nighttime than the daytime for NmF2 response for the mid-latitude stations and the reverse for the equatorial station. A fairer fit of the model with the observed for all parameters over Jicamarca suggests that equatorial regions are better represented on the model. Extensive study of B1 and B0 is recommended to arrive at a better performance of IRI.  相似文献   

3.
The modifications induced in the dynamics of the ionosphere by the major Japan earthquake (EQ) of March 11, 2011 (epicenter at 38.322°N, 142.369°E, M = 8.9) in presence of a magnetic storm are examined by mapping latitudinal variations of F-layer ionization density (NmF2) from 22 stations covering the epicenter zone. The changes forced into the Total Electron Content (TEC) by the major EQ in the magnetic storm ambiance are also examined from the GPS data collected at Guwahati (26° 10′ N, 91° 45’ E), situated in the major fault system of East Asia. The contributions of pre-seismic electric field as well as of magnetic storm time electric field in the observed density variations are brought into the ambit of discussion. The influence of lower atmosphere in shaping TEC features during the study case is highlighted. The effects of solar activity on density variations during such complex ambiances are also addressed.  相似文献   

4.
全球电离层对2000年4月6-7日磁暴事件的响应   总被引:1,自引:0,他引:1  
利用分布于全球的电离层台站的测高仪观测数据,对扰动期间,foF2值与其宁静期间参考值进行比较,研究了2000年4月6—7日磁暴期间全球不同区域电离层的响应形态,并通过对比磁扰期间NmF2的变化与由MSISR90经验模式估算的中性大气浓度比(no/nN2)的变化,探讨了本次事件期间的电离层暴扰动机制.结果表明,在磁暴主相和恢复相早期,出现了全球性的电离层F2层负相暴效应.最大负相暴效应出现在磁暴恢复相早期,即电离层暴恢复相开始时间滞后于磁暴恢复相开始时间.在磁暴恢复相后期,一些台站出现正相扰动.研究结果表明,本次事件期间的电离层暴主要是由磁暴活动而诱发的热层暴环流引起的.  相似文献   

5.
In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15–16 May 2005. The geomagnetic storm reached a minimum Dst of −263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém, Brasília, Presidente Prudente, and Porto Alegre, Brazil, during the period 14–17 May 2005. Also, we present ionospheric parameters h’F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas and São José dos Campos, Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14–15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.  相似文献   

6.
7.
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27–35 nT (at 1400 LT) , 30–40 nT (at 1200 LT) and 35–45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.  相似文献   

8.
With the help of STAR (Spatial Triaxial Accelerometer for Research) accelerometer measurements on board CHAMP (Challenging Minisatellite Payload), the global distributions of total mass density changes at about 400 km height during major magnetic storms are studied, aiming to improve the capability of current thermospheric model for predicting the storm-time mass density distribution. The density calculated by the NRLMSISE-00 model without using the geomagnetic active index as input is taken as a reference on top of which the storm-time changes are added. In total 19 storm events during 2001–2004 are used to perform a comprehensive statistical analysis. A relative calibration of drag coefficient along with accelerometer calibration parameters is made by fitting the CHAMP observed initial mass densities in with the NRLMSISE-00 model on quiet days before each storm. The dependences of the storm-time changes in mass density on both the total global Joule heating power, ∑QjQj and the high-resolution ring current index, Sym-H, are investigated. The lag times of mass density changes with respect to the Joule heating and Sym-H variation are obtained as a function of latitude and sunlight. By using a multiple linear regression analysis with proper time shift, an empirical relation connecting storm-time changes in mass density for 400 km height with the two parameters, ∑QjQj and Sym-H, has been worked out for different latitude and sunlight conditions (day-side or night-side). Adding a correction calculated from the empirical relation to the NRLMSISE-00 model reference leads to a better prediction of storm-time thermospheric mass density distribution.  相似文献   

9.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

10.
In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7–8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼−112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (−30 nT/h around 1300 UT).  相似文献   

11.
This paper presents an overview of the mathematical foundations for techniques in Exploratory Data Analysis (EDA) for the purpose of investigating the relationships among the numerous variables in large sets of multivariate space weather data. Specifically, we cover techniques in Principal Components Analysis (PCA) and Common Factor Analysis (CFA). These techniques are illustrated using space weather activity indices collected during the year 2002 and the corresponding noon-time hmF2 data from the International Reference Ionosphere (IRI). A CFA is used to categorize the activity indices, and a PCA is used to derive two macro-indices of activity to ascertain the strength of solar and geomagnetic activity. These macro-indices are then used to compare and contrast IRI’s noon-time hmF2 values at six different geographic stations. It was found that the correlation between hmF2 and the macro-indices more accurately represented the variation of this correlation with latitude found in previous studies than if we used an isolated conventional index, such as SSN and AE. We also found that the daily maximum value of the Polar Cap Index was dependent on both solar and geomagnetic activity, but the closely-related cross-Polar Cap Potential was solely associated with elevated levels of geomagnetic activity, which is a unique result compared to previous studies. We argue that the discrepancy can be explained by the difference in experiment designs between the two studies. This paper demonstrates the usefulness of EDA in space weather studies of large multivariate data sets.  相似文献   

12.
By using the data of GNSS (Global Navigation Satellite System) observation from Crustal Movement Observation Network of China (CMONOC), ionospheric electron density (IED) distributions reconstructed by using computerized ionospheric tomography (CIT) technique are used to investigate the ionospheric storm effects over Wuhan region during 17 March and 22 June 2015 geomagnetic storm periods. F-region critical frequency (foF2) at Wuhan ionosonde station shows an obvious decrease during recovery phase of the St. Patrick’s Day geomagnetic storm. Moreover, tomographic results present that the decrease in electron density begins at 12:00 UT on 17 March during the storm main phase. Also, foF2 shows a long-lasting negative storm effect during the recovery phase of the 22 June 2015 geomagnetic storm. Electron density chromatography presents the evident decrease during the storm day in accordance with the ionosonde observation. These ionospheric negative storm effects are probably associated with changes of chemical composition, PPEF and DDEF from high latitudes.  相似文献   

13.
This paper analyzes the response of the near equatorial and low latitude ionosphere of the South American sector to the geomagnetic storm occurred on 17 March 2015. Ionosonde data from Ramey (18.5° N, 292.9° E), Jicamarca (12.0° S, 283.2° E), Boa Vista (2.8° N, 299.3° E), Sao Luis (2.6° S, 315.8° E), Fortaleza (3.9° S, 321.6° E) and Cachoeira Paulista (22.7° S, 315.0° E) are used for the study. The results show negative disturbances in foF2 at low latitudes during the main phase of the storm, which were attributed to prompt penetration electric fields. Thus, the Equatorial Anomaly (EA) started to reduce their structure in this sector since on 17 March. During the recovery phase (on 18 March), positive disturbances were observed at low, mid-low latitudes (in the post-midnight – predawn hours), which can be mainly attributed to enhanced storm-time neutral winds and composition changes (i.e., increase in the O/N2 ratio). Disturbance dynamo electric fields would also contribute in modulating the electron density of the EA during this storm period.  相似文献   

14.
This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ ?100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time behavior of TEC shows clear positive and negative phases relative to the non-storm (median) behavior, with amplitudes being dependent on the time of sudden commencement of the storm and location. When a storm starts in the morning period, total electron content increases for all stations while a decrease in total electron content is manifested for a storm that had its sudden commencement in the afternoon period. The TEC and the EIA crest during the main phase of the storm is significantly impacted by the geomagnetic storm, which experiences an increase in the intensity of TEC while the location and spread of the crest usually manifest a poleward expansion.  相似文献   

15.
The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.  相似文献   

16.
采用已经建立的环电流离子解析模型,结合Chamberlain地冕中性层模型,研究了2004年11月一次大磁暴期间的环电流区域中性原子(ENA)图像.结果表明,模拟的ENA图像与TC-2卫星搭载的中性原子成像仪(NUAUD)的观测图像在方位角或地方时分布、高度或纬度分布和能谱分布方面存在一定的差异.如果依据磁暴发展的不同阶段来选择环电流离子模型的方位角不对称因子和通量最大方向的方位角,增大地冕中性层在低高度区域的密度或者考虑氢(H)以外的其他中性成分,改进注入边界处的离子能谱分布函数,且考虑不同种类环电流离子的比例随磁暴发展可能发生的变化,该模型有望产生更符合观测的模拟ENA图像.  相似文献   

17.
18.
Classification and quantification of the interplanetary structures causing intense geomagnetic storms (Dst?≤??100?nT) that occurred during 1997–2016 are studied. The subject of this consists of solar wind parameters of seventy-three intense storms that are associated with the southward interplanetary magnetic field. About 30.14% of the storms were driven by a combination of the sheath and ejecta (S?+?E), magnetic clouds (MC) and sheath field (S) are 26% each, 10.96% by combined sheath and MCs (S?+?C), while 5.48% of the storms were driven by ejecta (E) alone. Therefore, we want to aver that for storms driven by: (1) S?+?E. The Bz is high (≥10?nT), high density (ρ) (>10?N/cm3), high plasma beta (β) (>0.8), and unspecified (i.e. high or low) structure of the plasma temperature (T) and the flow speed (V); (2) MC. The Bz is ≥10?nT, low temperature (T?≤?400,000?K), low ρ (≤10?N/cm3), high V (≥450?km), and low β (≤0.8); (3) The structures of S?+?C are similar to that of MC except that the V is low (V?≤?450?km); (4) S. The Bz is high, low T, high ρ, unspecified V, and low β; and (5) E. Is when the structures are directly opposite of the one driven by MCs except for high V. Although, westward ring current indicates intense storms, but the large intensity of geomagnetic storms is determined by the intense nature of the electric field strength and the Bz. Therefore, great storms (i.e. Dst?≤??200?nT) are manifestation of high electric field strength (≥13?mV/m).  相似文献   

19.
In this paper, we use the modified GSM TIP model to explore how the thermosphere–ionosphere system in the American longitudinal sector responded to the series of geomagnetic storms on September 9–14, 2005. Comparison of modeling results with experimental data at Millstone Hill, USA (42.6°N, 71.5°W), Ramey, Puerto Rico (18.3°N, 66.8°W) and Jicamarca, Peru (11.9°S, 76.9°W) has shown a good agreement of ionospheric disturbances in the F-region maximum height. We examine in detail the formation mechanisms of these disturbances at different latitudes and describe some of the important physical processes affecting the behavior of the F-region. In addition, we consider the propagation of thermospheric wind surge and the formation of additional layers in the low-latitude ionosphere during geomagnetic storms.  相似文献   

20.
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号