首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
电控旋翼直升机配平及操纵特点分析   总被引:1,自引:0,他引:1  
陆洋  王浩文  高正 《飞行力学》2005,23(2):43-46
对采用电控旋翼直升机的配平及操纵特性进行了研究。首先根据电控旋翼的刚体桨叶变距运动方程,推导了襟翼操纵量与桨叶桨距的显式关系式。以此为基础,建立了电控旋翼直升机的飞行动力学模型。以WZ-1直升机为样例直升机,对比分析了电控旋翼直升机与常规直升机的配平特性和操纵响应特性。结果表明,电控旋翼直升机具有与常规直升机类似的配平和操纵特性,桨叶预安装角和桨根扭簧刚度这两个参数对其影响显著。  相似文献   

2.
建立了一个耦合高效配平策略和计算流体力学(CFD)技术的旋翼气动特性分析方法.采用CFD求解器进行雅克比矩阵和旋翼流场的计算,建立了一个包含直接配平法的旋翼气动特性分析平台;引入差量法思想对配平策略进行简化,发展了一种差量配平法,解决了直接配平法中雅克比矩阵计算效率低下的问题,显著缩短了计算时间.旋翼流场求解中控制方程采用Navier-Stokes方程,空间离散格式选取2阶迎风Roe格式,时间推进采用隐式lower-upper symmetric Gauss-Seidel (LU-SGS)格式,湍流模型为Baldwin-Lomax (B-L)模型.分别采用建立的基于直接配平方法和差量配平方法的气动特性分析平台对AH-1G和Helishape 7A直升机的旋翼进行了配平计算和研究,对比分析了两种配平方法的计算效率和精度及背景网格的网格量对配平结果的影响.结果表明:与直接配平法相比,耦合差量配平法的气动特性分析方法计算圈数更少,可节省至少60%的计算时间;使用疏化的背景网格虽然不利于捕捉流场细节,但是可以在兼顾配平结果准确性的同时,降低配平计算代价,提高旋翼配平和流场计算的效率.   相似文献   

3.
直升机的非线性模型及配平   总被引:1,自引:0,他引:1  
论述和实现了定常平飞时,单旋翼涵道尾桨直升机的非线性全量飞行动力学数值模型,建立模型时,考虑了直升机各部件特别是旋翼的动力学模型,考虑了诱导速度分布的非均匀性,以一具有水平铰外伸量及约束弹簧的铰接式旋翼等效算例直升机的真实旋翼。研究了直升机在平飞时的配平,提出了一种求解直升机平飞初值问题的数值方法-最速下降法。以某直升机为算例,建模并配平,结果表明,该模型符合直升机运动规律。  相似文献   

4.
变转速旋翼直升机性能及配平研究   总被引:11,自引:0,他引:11  
韩东 《航空学报》2013,34(6):1241-1248
 为研究变转速旋翼直升机性能及配平特性,本文以旋翼动力学综合模型为基础,研究了样例变转速旋翼直升机旋翼需用功率随旋翼转速、前飞速度、起飞质量和飞行高度的变化,以及旋翼总距、纵横向周期变距和桨轴纵横向倾斜角随旋翼转速和前飞速度的变化关系。研究结果表明,降低旋翼转速可明显降低旋翼需用功率,有利于提高直升机航时、航程和升限等性能指标。旋翼转速变化对直升机配平影响明显,配平限制了旋翼工作于过低的转速,另一方面,旋翼转速过低反而有可能增加旋翼的需用功率。旋翼总距和纵横向周期变距随旋翼转速的降低而加大,旋翼桨轴的纵向倾斜角随转速变化不大,横向倾斜角随旋翼转速的降低而减小。  相似文献   

5.
为提高复合式直升机飞行效率,对螺旋桨操纵策略和耦合优化配平计算方法进行了研究。首先,建立了构型适用的飞行动力学模型。然后,将已有的螺旋桨变桨距操纵改为桨距和转速复合操纵策略,采用二次序列规划法进行目标拉力的桨距/转速优化操纵求解;提出了改进的鲸鱼算法与螺旋桨操纵策略耦合求解的配平计算方法。最后,进行了计算及结果分析。研究结果表明:所采用的螺旋桨操纵策略有效地提高了复合式直升机飞行效率,所提出的耦合配平方法解决了由于螺旋桨操纵策略变化给复合式直升机带来的配平问题。  相似文献   

6.
以UH-60A直升机为例,建立了适合用于准确细致地描述旋翼气动特性和直升机配平的旋翼气动模型。分别将动量理论模型和该旋翼气动模型代入直升机全机飞行动力学模型中,对算例直升机进行了配平,并与试飞数据和参考模型结果进行了对比,验证了该模型有效且精度更好。在此基础上,分析了不同前进比桨盘诱导速度、迎角和升阻比的分布。结果表明:随着前飞速度增加,诱导速度分布更加不对称,桨盘侧倾加剧;大速度前飞时后行桨叶气流分离区域变大,在反流区内外迎角分布将发生突变;由于空气压缩性和反流区作用,大速度前飞时前行桨叶桨尖处与反流区内升阻比较低。   相似文献   

7.
刚性旋翼高速直升机旋翼间复杂的尾迹干扰作用会影响其配平特性。针对这一问题,本文采用黏性涡粒子方法来精确计算上下旋翼复杂尾迹流场下的诱导速度,桨叶环量则采用涡面元法进行求解,两种方法耦合建立了尾迹模型。基于此尾迹模型进行高速直升机飞行动力学建模,包括结合刚性旋翼挥舞运动模型和变距操纵模型的旋翼尾迹气动力建模、机身以及平/垂尾气动力建模。同时与风洞试验结果对比,先验证了旋翼气动力模型的准确性,在此基础上,以XH-59A直升机为研究对象,计算得到了0~80m/s速度下的配平特性结果,与飞行试验数据对比良好,验证了飞行动力学模型的有效性。最后分析了悬停及低速前飞时旋翼间尾迹流场干扰对全机配平特性的影响。  相似文献   

8.
数值延拓算法应用于直升机配平计算的研究   总被引:1,自引:0,他引:1  
直升机配平,本质上为非线性方程组的求解。以UH-60为例,建立直升机非线性飞行动力学模型;通过设置主旋翼轴前倾角为零简化模型,数值延拓得到悬停状态平衡解;以前飞速度为延拓参数,数值延拓完成定直平飞状态的配平计算。使用MATLAB计算平台,配平结果与参考数据吻合较好。结果表明:数值延拓方法简单有效,其结果具有连续性和全面性,易于观察解曲线走向。作为一类计算方法,数值延拓适用于直升机配平计算。  相似文献   

9.
分别运用涡流理论和动量理论对纵列式双旋翼直升机建立了两种飞行动力学非线性数学模型并完成配平计算,这两种方法得到的配平结果和参考的实验数据较吻合,所建模型是后续进行稳定性导数和稳定根计算的基础.  相似文献   

10.
首先基于Peters He广义动态尾迹理论,建立了电控旋翼动态尾迹入流模型,进一步结合电控旋翼襟翼操纵与桨叶变距之间的关系、桨叶挥舞运动方程和带襟翼翼型非定常气动力模型建立了适用于飞行力学分析的电控旋翼气动力模型.在此基础上,结合机身、尾桨、尾面的气动力模型,建立了完整的电控旋翼直升机飞行动力学分析模型.以Z-11直升机为基准改造为电控旋翼直升机作为算例,计算了前飞状态下电控旋翼直升机的诱导速度分布和桨盘迎角分布,对比了电控旋翼与常规旋翼的气动特性差异;在此基础上,进一步分析了电控旋翼直升机的配平特性随前飞速度的变化规律以及与常规直升机的差异.  相似文献   

11.
本文从工程应用角度出发,详细地介绍了直升机需用功率的计算方法。为验证该方法的准确性,本文以5种典型直升机为算例,进行了对比计算,获得了满意的结果。  相似文献   

12.
无人驾驶直升机凭着它一些得天独厚的优点被广泛应用于国防和国民经济建设的许多领域。本文对其外形设计进行了分析研究,介绍了一种新型共轴式无人驾驶直升机。  相似文献   

13.
本文根据理论研究和飞行实测结果,探讨确定直升机四个操纵,即总距、纵向和横向周期操纵、尾桨距操纵范围的方法,以及应考虑的飞行状态。  相似文献   

14.
本文介绍了计算直升机升力面气动载荷沿展向和弦向的分布以及气动中心的方法,并以法国“小松鼠”直升机SA350B1的垂尾为例进行了计算,获得了满意的结果。  相似文献   

15.
单旋翼直升机仿真建模软件设计   总被引:1,自引:0,他引:1  
本文简单介绍了单旋翼直升机实时仿真建模软件的功能、设计过程以及在软件研制过程遇到的配平问题的处理技术。  相似文献   

16.
对旋翼厚度噪声及其数值模拟方法进行了讨论,着重解决了以下两个问题:(1)通过理论和数值分析,讨论了使用消失球公式计算旋翼旋转噪声时计算结果的有效性;(2)通过计算机模拟,深入分析了旋翼厚度噪声的特征。  相似文献   

17.
综合仿真系统是直升机航空电子系统研制过程中必不可少的支持设施,本文简要介绍了其基本原理、系统结构和主要软件模块。  相似文献   

18.
直11型机主桨毂星形件是典型的复合材料层合板结构,在复杂的疲劳载荷环境下,有可能出现几种不同形式破坏模式,如:分层破坏和纤维断裂,忽略任何一种可能出现的破坏模式都将可能给飞行带来安全隐患。理想的试验是有限的试验件能得到所有的破坏模式的结果。本文较完整地总结和介绍了直11型机和“海豚”的复合材料星形件疲劳试验及试验结果,较详细地分析了各种破坏模式的形成机理和挥摆载荷比对破坏模式出现率的影响,认为疲劳试验载荷的挥摆载荷比不应仅仅根据实际飞行时载荷状况,主要应根据星形件结构性能来确定。  相似文献   

19.
在直升机型号的疲劳合格鉴定中,由于经费和时间的限制,同一种零部件的试件数通常不超过6个。由这些试验结果构成的样本在统计学上叫小样本。一般认为,由这种小样本确定的平均值还比较准确,但确定的标准差可能偏离真值甚远。本文介绍一种把小样本试验数据联合起来构成大样本,比较精确地确定标准差的方法。  相似文献   

20.
本文推导了直升机尾桨线性和非线性的静、动力分析方法,从理论上推导出直升机尾桨叶在悬停回转时的运动学及动力学之间的关系,并对Z11型机悬停回转状态下尾桨叶载荷进行了计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号