共查询到8条相似文献,搜索用时 15 毫秒
1.
O.V. Melnyk I.B. Vavilova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have analyzed a sample of 7000 galaxies in the Local Supercluster (LS) (V < 3100 km/s) selected from the LEDA database [Makarov, D.I., Karachentsev, I.D. A new catalogue of multiple galaxies in the local supercluster small galaxy groups. Small Galaxy Groups ASP Confer. Ser. 209, 40–46, 2000]. We have derived physical properties of poor LS groups selected by dynamical and 3D-Voronoi tessellation methods. Median values of mass-to-luminosity ratios for poor LS groups selected by these methods are 50 M⊙/L⊙ and 34 M⊙/L⊙, respectively. Physical parameters of LS galaxy triplets in comparison with other samples were evaluated. We suggest that the Dressler effect is present even in such poor groups as galaxy triplets. The data suggest that dark matter haloes are associated with the individual galaxies for LS triplets, which we find are dynamically younger systems. This contrasts with the properties of the Interacting and Northern & Southern triplet samples. For these two samples, the data suggest that the dark matter resides in a common halo. The median values of the mass-to-luminosity ratios for LS triplets, Northern & Southern triplets, and Interacting triplets are 35 M⊙/L⊙, 47 M⊙/L⊙, and 13 M⊙/L⊙, respectively. 相似文献
2.
T. Yoshioka A. Furuzawa S. Takahashi Y. Tawara S. Sato K. Yamashita Y. Kumai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2525-2529
We investigated properties of four isolated giant elliptical galaxies with extended X-ray halo using ASCA data. The derived size of X-ray halo, X-ray luminosity, and gravitational mass of the dark halo are unusually large those of X-ray halo of a single galaxy, but are typical for X-ray halos of groups and poor clusters of galaxies. The measured temperatures and abundances of the X-ray halo gas in these galaxies are also similar to those of the groups and poor clusters. Based on these results we identified these galaxies as “isolated X-ray overluminous elliptical galaxy” (IOLEG). The radial profiles of dark halo in these objects were derived from X-ray data. It is found that some are similar to those of compact groups while others are the same as those of normal ellipticals. The dark halos of lOLEGs are thus indistinguishable from those of groups (and poor clusters), which appears to be consistent with a widely believed idea that lOLEGs are a product of dynamical evolution of a compact group. However, mass-to-light ratios of IOLEGs (M200/LB 100–1000) are far greater than those of Hickson compact groups M200/LB 40–60). Since it is hard to consider that total optical luminosity of a compact group decreases by an order of magnitude in the course of dynamical evolution, such difference in the observed mass-to-light ratio between IOLEGs and Hickson compact groups strongly suggests that most IOLEGs have not evolved from compact groups which are observed at present. 相似文献
3.
A. N. Parmar G. Hasinger M. Arnaud X. Barcons D. Barret H. Bhringer A. Blanchard M. Cappi A. Comastri T. Courvoisier A. C. Fabian F. Fiore I. Georgantopoulos P. Grandi R. Griffiths A. Hornstrup N. Kawai K. Koyama K. Makishima G. Malaguti K. O. Mason C. Motch M. Mendez T. Ohashi F. Paerels L. Piro T. Ponman J. Schmitt S. Sciortino G. Trinchieri M. van der Klis M. Ward 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(12):2623
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. 相似文献
4.
P.E.J. Nulsen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,3(10-12)
Rapidly cooling gas is commonly found near the centres of clusters of galaxies. The structure of the resulting gas flows is reviewed. Total gas cooling rates of several hundred M yr−1 have been observed in a number of cases. Thermal instability and the ultimate fate of the cooled gas are discussed. The cooled gas could easily have formed a massive central galaxy. 相似文献
5.
Rudy Wijnands 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,38(12):2684-2688
I present a short overview of the behavior and properties of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) seen in the accreting millisecond X-ray pulsar SAX J1808.4–3658. I will focus on the behavior of the upper frequency QPO as a function of time and count rate as seen during the 2002 outburst of this source. I will also discuss briefly the correlated behavior of this QPO with QPOs at lower frequencies (several tens of hertz). 相似文献
6.
I.N. Myagkova S.N. Kuznetsov V.G. Kurt B.Yu. Yuskov V.I. Galkin E.A. Muravieva K. Kudela 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1929-1934
The Russian solar observatory CORONAS-F was launched into a circular orbit on July 31, 2001 and operated until December 12, 2005. Two main aims of this experiment were: (1) simultaneous study of solar hard X-ray and γ-ray emission and charged solar energetic particles, (2) detailed investigation of how solar energetic particles influence the near-Earth space environment. The CORONAS-F satellite orbit allows one to measure both solar energetic particle dynamics and variations of the solar particle boundary penetration as well as relativistic electrons of the Earth’s outer radiation belt during and after magnetic storms. We have found that significant enhancements of relativistic electron flux in the outer radiation belt were observed not only during strong magnetic storms near solar maximum but also after weak storms caused by high speed solar wind streams. Relativistic electrons of the Earth’s outer radiation belt cause volumetric ionization in the microcircuits of spacecraft causing them to malfunction, and solar energetic particles form an important source of radiation damage in near-Earth space. Therefore, the present results and future research in relativistic electron flux dynamics are very important. 相似文献
7.
8.
P.I.Y. Velinov L. Mateev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1586-1592
The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (dE/dh) according to the Bohr–Bethe–Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q(h) gives the possibility for application of adequate numerical methods – such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium (α-particles), light L, medium M, heavy H and very heavy VH group of nuclei. 相似文献