首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses--particularly of fish--observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena.  相似文献   

2.
针对复杂环境中存在运动目标、移动威胁与突发威胁等多种情况,将动态流体扰动算法与滚动优化策略相结合,进行无人机(UAV)三维动态航路规划.基于移动目标运动信息与威胁运动信息引入相对初始流场,用扰动矩阵量化表示障碍物或威胁对相对初始流场的扰动影响,计算相对扰动流场,进而得到实际流场流线即无人机规划航路.充分利用实时环境信息,综合考虑未来运动态势,在有限时域内采用动态流体扰动算法规划出可选航路,然后构建目标函数,滚动优化反应系数,实现在线航路规划.仿真结果表明,该算法能较好地适用于复杂动态环境.   相似文献   

3.
为实现对结构部分受损飞机的安全控制,建立了其动力学模型,通过分析将结构受损飞机的旋转运动分解为正常飞机旋转运动和由于受损引起的扰动运动,将结构受损飞机的控制转化为对扰动等不确定性因素的抑制问题.提出了一种基于扩张状态观测器的轨迹线性化控制方法进行飞行控制律设计,使系统具有较强的鲁棒性.仿真结果表明:当飞机右侧机翼缺损15%半翼展长时,控制系统能实现结构受损飞机的解耦控制,角速度响应能较好地跟踪指令,有效抑制了结构受损带来的不确定性和扰动.  相似文献   

4.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 micrometers2), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.  相似文献   

5.
针对强干扰及输出饱和条件下微小双星立体成像的构形保持问题,提出一种基于观测器的抗干扰复合控制策略.根据立体成像双星跟飞运动机理,建立双星相对运动动力学模型;设计了一种自适应干扰观测器,可同时实现系统状态和干扰信息的在线估计,并采用Lyapunov稳定性理论和线性矩阵不等式技术给出观测器存在条件.采用极点配置方法改善观测器系统的动态性能,引入指数衰减因子提高控制器的收敛速度.考虑执行机构的输出饱和特性,提出一种加权PD+LQR反馈与干扰前馈补偿的复合控制策略,能够抑制未知干扰的影响,保证系统的动态和稳态性能,具备双星构形保持控制能力.仿真结果验证了所提算法的有效性.   相似文献   

6.
对于高超声速飞行而言,惯性/天文组合导航的应用将会面临异常值干扰和噪声特性变化等问题,需要控制天文量测中异常值扰动的影响,提高对于可靠量测信息的利用效率。为此,本文研究了一种基于平衡因子的组合导航方法,采用鲁棒滤波方法进行惯性/天文组合导航系统的量测更新,将自适应滤波技术引入到鲁棒滤波中,考虑到天文量测信息不同的噪声特性和水平,将自适应因子分解为姿态自适应因子和位置自适应因子,从而平衡状态预测信息和天文测量信息的贡献。仿真结果表明,本文方法可以显著提高高动态环境影响下的组合导航性能。  相似文献   

7.
Spacelab is a large versatile laboratory carried in the bay of the Shuttle Orbiter. The first Spacelab mission dedicated entirely to Life Sciences is known as Spacelab 4. It is scheduled for launch in late 1985 and will remain aloft for seven days. This payload consists of 25 tentatively selected investigations combined into a comprehensive integrated exploration of the effects of acute weightlessness on living systems. An emphasis is placed on studying physiological changes that have been previously observed in manned space flight. This payload has complementary designs in the human and animal investigations in order to validate animal models of human physiology in weightlessness. The experimental subjects include humans, squirrel monkeys, laboratory rats, several species of plants, and frog eggs. The primary scientific objectives include study of the acute cephalic fluid shift, cardiovascular adaptation to weightlessness, including postflight reductions in orthostatic tolerance and exercise capacity, and changes in vestibular function, including space motion sickness, associated with weightlessness. Secondary scientific objectives include the study of red cell mass reduction, negative nitrogen balance, altered calcium metabolism, suppressed in vitro lymphocyte reactivity, gravitropism and photropism in plants, and fertilization and early development in frog eggs. The rationale behind this payload, the selection process, and details of the individual investigations are presented in this paper.  相似文献   

8.
The health condition and work capacity of space travellers during many flights remained adequate. Medical examinations performed during and after space flights consistently revealed the following symptom-complexes: space motion sickness, changes in the muscles system, hemodynamics, fluid-electrolyte balance and its regulation, calcium metabolism and bone density, transient erythrocytopenia and immunity decline. This paper presents a detailed discussion of the changes observed in space flight.  相似文献   

9.
带翼潜航器具有面积较大的升力面,滚转运动是带翼潜航器的基本机动方式之一.利用计算流体力学(CFD,Computational Fluid Dynamics)方法研究了带翼潜航器的动导数,计算结果表明:粘性力以及主翼对机体和尾翼的干扰对加速度导数影响较大,不能将加速度导数简化为附加质量系数.带翼潜航器水动力模型直接采用加速度导数,动力学和运动学方程组考虑滚转运动参数的影响.利用小扰动假设将动力学和运动学方程组线性化,并将方程组分为纵向和横航向两组.通过计算扰动运动方程组的模态研究了带翼潜航器的动稳定性.提出的动力学模型及动稳定性分析方法可用于带翼潜航器的稳定性分析以及运动控制系统的设计.  相似文献   

10.
A set of vestibular experiments was performed during the course of the German Spacelab D-1 mission from 30 October to 6 November 1985 by a consortium of experimenters from various european countries. Similar to the Spacelab SL-1 mission all of the scientific crew members were theoretically and practically trained for the experiments. Baseline measurements for all tests were collected 113, 86, 44, 30 and 18 days prior to the mission and compared with data taken inflight, on the landing day and the consecutive 7 to 14 days.

The hardware comprised mainly a motordriven accelerating platform, the SPACE SLED, and the vestibular helmet, a multi-purpose instrument in support of a variety of vestibular experiments including air-calorisation of the ears, optokinetic stimulation pattern presentation and optical and nystagmographic recording of eye movements.

Measurements of the threshold for the perception of detection of whole body movement did not reveal any dramatic changes in the 2 measured axes inflight when compared to preflight values. Early postflight values show a significantly elevated threshold for all axes in 3 out of 4 subjects.

The caloric nystagmus, already found during the SL-1 mission, was confirmed on all three tested subjects during the D-1 mission. It's amplitude and in some instances it's direction were influenced by horizontal acceleration on the SLED.

The amplitude of optokinetic nystagmus increased when subjects were allowed to free-float over that seen when subjects were fixed.

Stimulation of the neck receptors by roll movements of the body against the fixated head resulted in illusory object motion to the contralateral side. Torsional movements of the eyes during such neck receptor stimulation was present inflight and postflight, while it had not been observed preflight. Most results point to a reduction of otolithic effects in favour of visual and proprioceptive influences for spatial orientation.  相似文献   


11.
    
悬停和前飞是昆虫常用的两种飞行状态,研究昆虫在这两种状态下的动稳定性问题对昆虫飞行动力学研究工作具有重要意义.基于"平均模型"和小扰动线化的思想,给出了昆虫绕平衡点处纵向和横向的小扰动运动方程;通过计算流体力学方法获得气动导数,并利用特征模态分析法求解运动方程,研究了蜂蝇悬停和前飞时的动稳定性.结果证明,悬停时纵向和横向扰动运动均存在不稳定模态,悬停是不稳定的;前飞时,纵向扰动运动的不稳定模态的倍幅期较悬停时减小,其纵向不稳定性逐渐增强,而横向不稳定性较悬停时减弱,趋于较弱或中性的稳定;前飞是不稳定的.  相似文献   

12.
针对高动态环境下视觉同步定位与地图构建(Simultaneous Localization And Mapping,SLAM)系统的可靠性受运动模糊的限制,研究了一种基于生成对抗网络(Generative Adversarial Network,GAN)和AKAZE特征点的运动去模糊视觉SLAM方案。首先对因相机快速运动而产生的模糊图像进行AKAZE特征点的提取与检测,并根据特征点分布的丰富程度计算图像块权重,结合灰度图像的方差信息建立特征点与模糊程度之间的量化关系表;之后将达到模糊分数阈值的图像同步输入至改进GAN网络模型,该网络以端对端的形式恢复中心模糊帧的纹理信息,最后将输出的清晰图像重新进行位姿估计参与ORB-SLAM2后端优化过程。在公开数据集TUM上进行测试,对于受模糊影响较严重的数据集,方案可以明显降低相机轨迹估计的整体误差,同时维持较好的鲁棒性。  相似文献   

13.
稳定性和终态自运动是动力学优化中的难点.为了解决冗余度机器人动力学优化中的这些困难,深入研究了动力学优化和关节速度间的内在联系和矛盾,提出通过优化关节速度提高动力学优化的综合品质的思想,阐述了在线调节关节速度齐次项,同时改善稳定性和终态自运动的方案.仿真证实所提方案的实用性和有效性.  相似文献   

14.
针对垂直/短距起降(V/STOL)飞机在悬停/平移模式下存在的动力学耦合、推力矢量控制冗余以及易受扰动风影响的问题,提出了一种基于高阶线性自抗扰控制(LADRC)的鲁棒协调解耦控制方法。首先根据V/STOL飞机的概念方案,建立了推力矢量模型和扰动风影响下的非线性悬停/平移运动模型。然后在此基础上,给出了该模式下位置和姿态的协调控制策略,据此通过控制量变换设计了六通道的自抗扰解耦控制律,其中利用LADRC对总扰动的实时估计补偿能力避免了多推力矢量的冗余控制。仿真比较结果验证了LADRC对悬停/平移模式控制的有效性以及对飞机内部参数摄动和外界突风干扰的鲁棒性。   相似文献   

15.
针对舰载机弹射起飞安全性问题,对起飞过程中影响起飞安全的因素进行了详细分析,建立了舰载机离舰上升段的非线性六自由度运动模型,仿真研究了甲板的横摇、偏摆运动以及常值侧风干扰等因素对弹射起飞特性的影响。分析得出,对舰载机离舰后滚转和侧滑运动起主要影响的是甲板横摇运动和侧风干扰。设计了基于非线性动态逆方法的控制器以保留模型的非线性特征,实现对横侧向运动状态的解耦控制,效果更佳。仿真结果表明,设计的侧向控制律能够保证飞机的滚转角在离舰后3 s内满足不超过5°的安全准则要求,且不会因侧风干扰出现明显的侧滑现象,能够保证舰载机安全起飞。   相似文献   

16.
    
目前利用飞行员静态可达域和可视域对驾驶舱人机界面进行设计和布置无法保证飞行员在过载和振动状态下的操作特性满足飞行安全操作的需求.针对飞行员触点操作,基于LifeMOD人体肌肉-骨骼模型,利用正常状态下触点操作动作的捕捉数据对飞行员模型的肌肉进行训练,建立正向飞行员操作模型;在正向飞行员操作模型的基础上,建立了含有肌肉力单元的飞行员人体动力学仿真模型,能够进行逆向动力学仿真和分析.对模型加入±Z和+X方向的加速度以及ZY方向的振动等外部运动激励,模拟不同加速度和振动对飞行员触点操作的影响.研究结果表明:中央控制台的触点操作受加速度和振动影响最小,应急操纵设备应布置在该区域,可保证飞行员在应急条件下及时、准确地操纵飞机,提高飞机的飞行安全性.非常规情况下飞行员触点操作能力仿真能够指导驾驶舱人机界面的优化布置,提高应急情况下飞机操纵安全性.  相似文献   

17.
This paper presents a trajectory planning algorithm for a space robot with dual-manipulators. Here one manipulator of the space robot captures a target, and another manipulator is free. In this case, this study uses one manipulator as the mission manipulator to capture the target, and another as the balance manipulator aiming at the compensation of the pose disturbance. For this method, a novel trajectory planning algorithm applied to the balance manipulator is presented. The trajectory planning problem is transformed into series of problems of the optimal state solution, and then the iterative algorithms for the trajectory planning are designed. In the iterative algorithms, the bias force on the spacecraft base caused by the balance manipulator is used as the compensation force. Then, to calculate the expected compensation force and torque, a pose control law for the spacecraft base is introduced. The expected compensation force and torque provide equality constraints for optimization problems, which implies that the trajectory planning algorithm compensates for not only the disturbance generated by the manipulator’s motion, but also environmental disturbances. This is because the expected compensation force and torque depend on the pose change of the spacecraft base rather than the type of the disturbance. Numerical simulation was carried out to analyze the proposed trajectory planning method. It was observed that the method greatly reduces the disturbance of Manipulator A on the spacecraft base. These results validated the effectiveness of the proposed method for the trajectory planning to make the spacecraft base disturbance up to minimum.  相似文献   

18.
This paper presents a coordinated control scheme for two capture tasks via a dual-arm space robot with its base on a flexible space structure. The robot system consists of a base, a mission arm for capture, and a balance arm for removing disturbance forces to the base. To counteract the impact of structural vibration, a two-stage strategy containing a vibration control stage and a target capture stage is proposed. In the first stage, the robot and structure are treated as a mass-spring system in which the coupling effect between the robot and the flexible structure is exploited to suppress structural vibration. Notably, the collision avoidance between two arms is achieved by a velocity inequality constraint, wherein the reactionless motion is utilized. In the second stage, a reactionless trajectory is planned for the mission arm to reach the target location and attitude, as the balance arm remove the coupling disturbance to the base. Afterwards, the balance arm becomes the new mission arm for capture and the other arm is defined as the new balance arm. Finally, numerical simulations are given to validate the efficiency of the proposed coordinated control strategy.  相似文献   

19.
In March 1985 ESA's GIOTTO spacecraft will fly by P/Halley's nucleus at a distance of a few hundred kilometres. The near nucleus dust environment the probe will traverse poses a hazard with respect to physical damage as well as to attitude disturbance with the possible loss of ground station contact. To predict S/C survivability and dust impact rates for the experiments, a model of the spatial distribution of the dust in the nucleus' vicinity is required. In the ‘dynamic’ model, the local spatial dust density is derived from exact expressions for the dust particle dynamic motion. The model has been implemented in a software system which allows for fast simulations of a cometary fly-by.  相似文献   

20.
Larval cichlid fish (Oreochromis mossambicus) siblings were subjected to 3 g hypergravity (hg) and total darkness for 21 days during development and subsequently processed for conventional histology. Further siblings reared at 1 g and alternating light/dark (12h:12h) conditions served as controls. Cell number counts of the visual Nucleus isthmi (Ni) versus the vestibular Nucleus magnocellularis (Nm) revealed that in experimental animals total cell number was decreased in the Ni, possibly due to retarded growth as a result of the lack of visual input whereas no effect was observed in the Nm. Calculating the percentual asymmetry in cell number (i.e., right vs. the left side of the brain), no effects of hg/darkness were seen in the Ni, whereas asymmetry was slightly increased in the Nm. Since the asymmetry of inner ear otoliths is decreased under hg, this finding may indicate efferent vestibular action of the CNS on the level of the Nm by means of a feedback mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号